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a b s t r a c t

Chaotic systems without equilibrium points have been investigated and received significant attention
recently. In this work, we propose a new three-dimensional fractional-order chaotic system without
equilibrium. Dynamics of the fractional-order system are investigated and a circuit implementation of
the system by using electronic components is presented. Interestingly, bistable chaotic attractors of such
fractional system are discovered. In addition, we are able to control and synchronize the system by using
active control and unidirectional coupling.

� 2017 Elsevier GmbH. All rights reserved.

1. Introduction

Fractional calculus has been studied since the 17th century and
its applications have been reported in various areas ranging from
physics, electrical circuit, chemical engineering, electromagnetic
theory to control [1–13]. It is interesting that chaotic behavior
has been observed in fractional-order systems [14–17]. Due to
the complexity and the advantages of fractional derivatives, engi-
neering applications using fractional-order chaotic systems have
been also developed [18–21]. Different chaotic fractional-order
systems have been presented in the literature such as fractional
Chua system [14–16], fractional Lorenz system [17], fractional
Rössler system [22], fractional Chen system [23–25], fractional Lü
system [26], fractional Duffing system [27], fractional incommen-
surate order financial system [28], fractional order switching sys-
tem [29] and so on. It is noted that there are countable numbers
of equilibrium points in these chaotic fractional-order systems.

Recently, researchers have shown an increased interest in frac-
tional systems without equilibrium exhibiting chaotic behavior

[30]. Despite of the absence of equilibrium points, such systems
display complex behavior. Moreover, they are different from other
previous ones especially from the view point of computation [31–
33]. Their attractors, called ‘‘hidden attractors”, cannot be localized
straight forwardly by applying a standard computational proce-
dure [34–36]. No-equilibrium systems with hidden attractors have
attracted interest in the last few years [37–41].

Reported fractional-order chaotic systems without equilibrium
and their noticeable features are summarized in Table 1. The first
non-equilibrium fractional-order chaotic system was introduced
by Li et al. [30]. Li system is a four dimensional system which
can generate chaos for the order as low as 3.28 [30]. Zhou and
Huang constructed another 4-D fractional-order system without
equilibrium point [42]. Zhou-Huang system is non chaotic for its
integer-order but it can exhibit chaotic attractor for its
fractional-order as low as 3.2. In addition, based on a integer-
order hyperchaotic system, authors proposed a hyperchaotic
fractional-order system without equilibria [43]. Its hyperchaos
exists for the fractional-order as low as 3.84. Rajagopal et al. imple-
mented 4-D fractional-order no equilibrium cubic nonlinear resis-
tor system in FPGA [44]. A natural question is posed ‘‘Is there a 3-D
fractional-order chaotic system without equilibrium?” Until now a
few answers to this question are reported. Only a 3-D fractional
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system without equilibrium points was investigated by Cafagna
and Grassi [45,46]. The presence of chaos in Cafagna–Grassi frac-
tional system was obtained when its fractional-order is as low as
2.94. However it is trivial to verify that this system’s fractional-
order is close to the integer-order 3. Moreover, the feasibility of
such 3-D Cafagna–Grassi fractional system has not been consid-
ered. Further studies need to be carried out in order to provide
insights for 3-D fractional-order systems without equilibrium.

This study makes a contribution to researches on fractional
chaotic systems by discovering a novel fractional-order chaotic
system without equilibrium. The description of the no-
equilibrium system is presented in the next section while its
dynamics are reported in Section 3. Circuit implementation of
the theoretical fractional-order chaotic system is studied in Sec-
tion 4. The abilities of control and synchronization of the fractional
system are investigated through active control and unidirectional
coupling in Section 5. Finally, we draw conclusion remarks in the
last section.

2. Model of the fractional-order chaotic system without
equilibrium

Previous studies have presented different definitions of
fractional-order derivative, however Grunwald–Letnikov, Rie-
mann–Liouville and Caputo definitions are commonly used
[1,47–49]. In this work, we utilized the Caputo definition, which
is defined by
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In Caputo definition (1), m is the first integer which is not less than
q m ¼ qd eð Þ while C is the Gamma function:

C zð Þ ¼
Z 1

0
tz�1e�tdt ð2Þ

In this work, we consider a three dimensional fractional-order
system given by

Dqx ¼ y

Dqy ¼ �x� yz

Dqz ¼ xyþ ax2 � b

8><
>: ð3Þ

in which three state variables are x; y; z while two positive parame-
ters are a and b (a; b > 0). Dq denotes the Caputo fractional deriva-
tive (1) with initial time t0 ¼ 0 and q 2 0;1ð Þ. In system (3), the
commensurate fractional order is denoted as q. Because system
(3) is a three dimensional system, its fractional order is therefore
3q. It is easy to verify that the fractional-order system (3) has no
any equilibrium. It is noted that we have constructed system (3)
based on the system NE8 listed in [39]. Fractional-order system
(3) is different from the reported fractional systems [17,22], which
have a countable number of equilibrium points. Interestingly, sys-
tem (3) belongs to a new class of systems without equilibrium
[45,46].

The fractional-order system (3) is invariant under the coordi-
nate transformation x; y; zð Þ ! �x;�y; zð Þ. In other words, there is
a rotational symmetry with respect to the z-axis in fractional-
order system (3).

It is interesting that the fractional-order system can generate
chaotic behavior although there is the absence of equilibrium.
For example, chaotic phase portraits of fractional-order system
(3) are presented in Fig. 1, for q ¼ 0:9; a ¼ 1:5; b ¼ 1:3, and initial
conditions ðxð0Þ; yð0Þ; zð0ÞÞ ¼ ð0;0:1;0Þ. In order to calculate the
largest Lyapunov exponent of fractional-order system (3) we have
applied the practical method reported in [50]. In this case, the lar-
gest Lyapunov exponent of the fractional system is 0.1374.

3. Dynamics of the fractional-order chaotic system without
equilibrium

We investigate the dynamics of fractional-order system (3) by
varying the bifurcation parameter b for a ¼ 1:5 and the commensu-
rate fractional order q ¼ 0:9. The bifurcation diagram of fractional-
order system (3) is shown in Fig. 2. In this work, we have used the
Adams-Bashforth-Moulton method to solve fractional differential
equations [51]. When decreasing the value of the parameter b from
1.4 to 1.2, there is the presence of a route from non-chaotic behav-
ior to chaos. System generates non-chaotic behavior, as illustrated
in Fig. 3. It is noted that obtained results agree with the reported
studies about periodic solutions in fractional order systems
[46,52–55]. Dynamics of fractional-order system (3) when consid-
ering the fractional order q as bifurcation parameter has been pre-
sented in Fig. 4. As shown in Fig. 4, the system exhibits non-chaotic
and chaotic behavior.

As it has been mentioned in Section 2, there is a rotational sym-
metry with respect to the z-axis in fractional-order system (3).
Thus, we may observe bistable attractors in fractional system (3).
Remarkably, we have found the bistable chaotic attractors of the
fractional-order system (3) for q ¼ 0:9; a ¼ 1:5; b ¼ 1:32 as illus-
trated in Fig. 5. To the best of our knowledge, there is no similar
result in reported fractional-order systems without equilibrium.

4. Circuit implementation

It is now well established from a variety of studies that circuit
implementations of theoretical chaotic models play vital roles in
engineering applications [56–59]. Moreover, the feasibilities of
theoretical models are verified via their circuit implementations
[60]. The circuit implementation of the introduced fractional sys-
tem without equilibrium is, therefore, discussed in this section.

Previous researches have established that integer chaotic sys-
tems have been implemented by analog approach or digital
approach [61–63]. Analog realizations of integer chaotic systems
consist of discrete active devices or mixed-mode active devices
[64–67]. The designers do not worry about the amplitudes of sig-
nals because integrated circuit implementations are possible when
scaling or normalizing the amptitudes of the magnitudes of the
state variables [68,69]. Digital realizations of integer chaotic sys-
tems are based on microcontroller or field-programmable gate
arrays (FPGA) [70–72]. Recently FPGAs are quite useful for chaotic
systems implementation [73]. Similarly, such approaches have
been performed for fractional chaotic systems [30,44,74,75].

As can be seen in Fig. 1, the amplitudes of the state variables are
smaller that 10. The amplitudes of variables in system fractional-
order system (3) are in the range of the output of the operational
amplifier. Therefore, we do not have to scale or normalize the
amplitudes of the magnitudes of the state variables. It is conve-
nient to implement the proposed fractional-order system (3) with
the operational amplifier approach [60,76]. The schematic of

Table 1
Reported fractional-order chaotic systems without equilibrium.

Systems Dimension Fractional order Circuit implementation

[44] 4 3.984 Yes
[43] 4 3.84 No
[30] 4 3.28 Yes
[42] 4 3.2 Yes

[45,46] 3 2.94 No
This work 3 2.7 Yes
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