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a  b  s  t  r  a  c  t

In this  study,  a  new  method  is  proposed  for  the  exact  analytical  inverse  mapping  of  Takagi–Sugeno  fuzzy
systems  with  singleton  and linear  consequents  where  the  input  variables  are  described  by  using  strong
triangular  partitions.  These  fuzzy  systems  can  be decomposed  into  several  fuzzy  subsystems.  The  output
of the  fuzzy  subsystem  results  in multi-linear  form  in singleton  consequent  case  or  multi-variate  second
order  polynomial  form  in linear  consequent  case.  Since  there  exist  explicit  analytical  formulas  for  the
solutions  of  first  and  second  order  equations,  the exact  analytical  inverse  solutions  can  be obtained  for
decomposable  Takagi–Sugeno  fuzzy  systems  with  singleton  and  linear  consequents.  In  the  proposed
method,  the  output  of  the fuzzy  subsystem  is  represented  by  using  the  matrix  multiplication  form.  The
parametric  inverse  definition  of the  fuzzy  subsystem  is obtained  by  using  appropriate  matrix  partitioning
with  respect  to the  inversion  variable.  The  inverse  mapping  of  each  fuzzy  subsystem  can  then  easily  be
calculated  by  substituting  appropriate  parameters  of  the fuzzy  subsystem  into  this  parametric  inverse
definition.  So,  it  becomes  very  easy  to find  the  analytical  inverse  mapping  of the overall  Takagi–Sugeno
fuzzy  system  by  composing  inverse  mappings  of  all fuzzy  subsystems.  The  exactness  and  the  effectiveness
of  the  proposed  inversion  method  are  demonstrated  on  trajectory  tracking  problems  by simulations.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The inversion of a system model has an important role in model based engineering applications. However, in general, it is not easy to
obtain a mathematical model for nonlinear systems. Since fuzzy systems are universal approximators which can approximate any nonlinear
function with an arbitrary degree of accuracy [1–5], they are easy and effective tools for modeling nonlinear systems. Therefore, the fuzzy
model inversion is widely used especially in model based engineering applications [6–14].

In literature, there are several methods which provide exact or approximate inverse solutions for fuzzy system models. The exactness
of the solution is important in order to ensure stability or robustness of the process. However, the exact inversion methods need certain
limitations on the fuzzy system to be inverted such as having monotonic rule bases, singleton consequents, invertibility property. On the
other hand there are no such limitations for the approximate inversion methods.

The inversion of a fuzzy system can be handled as an identification problem manner and the approximate inverse fuzzy model can be
obtained directly by using the reverse input–output data of the system [15–17]. In a similar manner, the inversion of a system can also be
handled as an optimization problem manner and the appropriate inversion variable minimizing error between the desired and the system
output can be found by using iterative procedures such as Newton method [18], Levenberg–Marquardt algorithm [19], genetic algorithms
[20], Big Bang-Big Crunch algorithm [21]. In these iterative methods, it is difficult to guarantee the desired convergence in each sampling
time for any nonlinear system. Therefore, sufficient convergence may  not be obtained in each sampling time and this reduces the stability
and the robustness of the process for practical implementations.

On the other hand, the exact inverse fuzzy model of a fuzzy system can be obtained by using rule-by-rule inversion approach which
permutes the antecedent and consequence parts of the fuzzy model [9,22–25]. This linguistic inversion approach is valid for the fuzzy models
of which input variables are defined by using strong triangular fuzzy partitioning and rule consequents are singletons. Additionally, some
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Fig. 1. Strong triangular fuzzy partition.

invertibility conditions which involve the monotonicity of the entire rule base of the fuzzy model must be satisfied. These invertibility
conditions guarantee the existence and uniqueness of the inverse solution. In [26], the exact inversion method which handles the inversion
procedure partially is proposed for decomposable fuzzy systems. Takagi–Sugeno (TS) fuzzy systems of which input variables are defined
by using strong triangular partition and the rule consequents are singletons can be decomposed into multi-linear subsystems [27]. In
this method, the inverse solution for overall fuzzy system is obtained by calculating inverse solutions of its all subsystems individually.
Therefore, there is no need to check the invertibility of the fuzzy system beforehand. However, this approach is valid only for decomposable
fuzzy systems with singleton consequents. In [28], an exact inversion method which removes the necessity of the decomposability property
is proposed for TS fuzzy systems with singleton consequents. The only limitation of this method is that the inversion variable must be
represented by using piecewise linear membership functions. In [29], an analytical method is proposed for the exact inversion of TS fuzzy
systems with linear consequents where the input variables are described using strong triangular partitions. In [30], the inversion method
proposed in [28] is extended to the inversion of fuzzy systems with linear consequents.

In this study, a new exact analytical inverse mapping method is proposed for TS fuzzy systems with singleton and linear consequents
where the input variables are described by using strong triangular partitions. TS fuzzy systems having strong triangular partitions can be
decomposed into several fuzzy subsystems. In the proposed method, the analytical formulation of the output of each fuzzy subsystem
is derived by using the matrix multiplication form representation of decomposable TS fuzzy systems. This matrix multiplication form
simplifies the mathematical representation of the overall TS fuzzy system and also its inversion procedure especially in the case of high
number of input variables. The output of the fuzzy subsystem results in multi-linear form in singleton consequent case or multi-variate
second order polynomial form in linear consequent case. Thus, first and second order equations are derived to be solved by using appropriate
matrix partitioning for the fuzzy systems with singleton and linear consequents, respectively. Then, the parametric inverse definition of
the fuzzy subsystem is obtained via analytical formulas. The inverse mapping of each fuzzy subsystem can then easily be calculated by
substituting appropriate parameters of the fuzzy subsystem into this parametric inverse definition. So, it becomes very easy to find the
analytical inverse mapping of the overall TS fuzzy system by composing inverse mappings of all fuzzy subsystems. Algorithms are also
given for the practical implementation of the proposed inversion procedures. The exactness and effectiveness of the proposed inversion
method are demonstrated on trajectory tracking problems by simulations.

The rest of the paper is organized as follows: In Decomposition of TS fuzzy systems section, decomposition of TS fuzzy systems is briefly
presented. In The exact inversion of decomposable TS fuzzy systems section, the proposed exact inversion method is introduced. In Simulation
Studies section, simulation studies are given to show the exactness and the effectiveness of the proposed method. Finally, conclusions are
outlined in Conclusion section.

2. Decomposition of TS fuzzy systems

The general rule structure of a TS fuzzy system with n input variables, xk∈ Xk ⊂ �, k = 1 , ..., n, and one output variable, y∈ Y ⊂ �, can be
defined as [26]

Ri1,i2,...,in : IF x1 is Ai1
1 and x2 is Ai2

2 and,. . .,  and xn is Ain
n

THEN y = f i1,i2,...,in (x1, x2, . . .,  xn)
(1)

where Aik
k

, k = 1, . . .,  n, is the fuzzy set defined for the input variable xk and fi1,i2,. . .,in is the consequent crisp function. When Nk fuzzy

sets are used for the definition of xk,
{

ik ∈ Ik =
{

1, 2, . . .,  Nk

}}
, k = 1, . . .,  n, the complete rule base consists of N =

∏
k=1,. . .,nNk rules

with the corresponding index set I = I1 × I2 × , . . .,  × In. In singleton and linear consequent cases, the crisp rule output functions are
defined as fi1,i2,. . .,in = qi1,i2,. . .,in and f i1,i2,...,in = qi1,i2,...,in

0 + qi1,i2,...,in
1 · x1 + · · · + qi1,i2,...,in

n · xn, respectively. Here, qi1,i2,...,in
j

(j = 0, . . .,  n), are
the coefficients of output crisp functions.

Strong triangular fuzzy partition is commonly used in fuzzy system design for the definition of input variables. Because, such fuzzy
partitions are easy to construct, have a clear interpretation and, most importantly, are sufficient for modeling complex highly nonlinear
systems [31].

When strong triangular fuzzy partition shown in Fig. 1 is used for the definition of input variables, each universe of discourse Xk =
[a1

k
, aNk

k
], k = 1, . . .,  n can be considered as the union of Nk − 1 intervals defined by two consecutive model values as

Xk =
⋃

ik=1,...,Nk−1

[
aik

k , aik+1
k

]
k = 1, . . .,  n (2)
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