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a b s t r a c t

In this paper a low-complexity cyclostationary-based modulation classifier is presented, which is capable
of distinguishing between OFDM, GFSK and QPSK modulations. The classifier computes and analyses the
cyclic autocorrelation of the received signals in an implementation-efficient manner. Instead of comput-
ing a high number of values of the cyclic autocorrelation like other implementations, which leads to a
non-implementable solution, it computes 3 values, allowing a real-time hardware implementation of
the algorithms at a limited cost. The performance is evaluated through simulations in MATLAB, under
white Gaussian noise and receiver impairments such as frequency offset, I/Q imbalance and DC offset.
In order to assess the actual performance and complexity of the classifying algorithm, an FPGA-based
implementation is presented in this document. Performance results with real signals are provided, which
validate the ones obtained through simulations.

� 2017 Elsevier GmbH. All rights reserved.

1. Introduction

Modulation classifiers have become a challenging and impor-
tant task in cognitive radio and software defined radio systems.
They aim to detect the modulation format of the received signal,
thus providing more information than a traditional spectrum sens-
ing algorithm. Usually, spectrum sensing algorithms, based on
energy detection, matched filtering or cyclostationary characteris-
tics, only determine whether a channel is available or not. These
free channels can be used by cognitive radio users, which are
allowed to opportunistically share the media with licensed users
without interfering them. In addition to finding free channels as
in traditional spectrum sensing algorithms, a modulation classifier
can distinguish between several modulations formats. This infor-
mation can be used by the cognitive node, for example, to obtain
more suitable statistics, to make decisions in function of the
detected signal or to distinguish its network from other
transmissions.

The two main solutions to carry out this task are: likelihood
based classification and feature based classification [1]. With like-
lihood based classification, the decision is taken through a function
which is calculated under the entire possible hypothesis, choosing

the one which maximizes the function. The major disadvantage of
this approach is that information about the channel must be
known. With the feature based classification, the receiver extracts
several characteristics of the signal, which are then analyzed by a
classifier in order to establish the modulation format. The most
common features in the literature are: signal statistics [2], signal
wavelet transform [3], cummulants [4] or cyclostationary charac-
teristics [5]; while classifiers can be implemented using neural net-
works, support vector machines, k-nearest neighbor, naïve Bayes,
linear discriminant analysis or neuro-fuzzy algorithms [5].

The main feature classifiers across the literature are based on
cyclostationary characteristics, which are obtained from spectral
correlations and are robust against model mismatches. A
cyclostationarity-based neural network classifier is proposed in
[5] to distinguish between FSK, PSK, PAM and QAM. Several classi-
fiers have been studied based on cyclostationary characteristics in
[6] to distinguish between BPSK, QPSK, FSK and MSK; concluding
that naïve Bayes and linear discriminant analysis provide best
trade-off between classification accuracy and complexity. How-
ever, cyclostationary-based classifiers are a complex solution due
to the requirement of a high sampling frequency and the computa-
tional complexity of involved operations. Compressed sensing has
been proposed in [7] in order to solve the first problem. Neverthe-
less, computational complexity is not addressed, making its real
application to cognitive radio uncertain. Therefore, a simpler
solution is required in order to be implemented on real hardware
and at limited cost.
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In this paper we propose a low-complexity cyclostationary-
based modulation classifier capable of distinguishing between
OFDM, QPSK and GFSK. These three modulations have been chosen
because they are the main solutions in the ISM bands. In the pro-
posed classifier, an energy detector is used prior to classification
to distinguish between noise and signal, after which cyclostation-
ary features are extracted for classifying the modulation. In order
to reduce the involved computational complexity, the amount of
computed cyclostationary features has been limited, 3 values of
the cyclic autocorrelation are computed. As a result, the FPGA
implementation of the modulation classifier has been possible.
Therefore, this is, at the best of the authors knowledge, the first
implementation of a cyclostationary classifier which is capable of
distinguishing between 3 modulations. Furthermore, the proposed
implementation determines the modulation in a reasonable period
of time (200 samples of the signal). Its performance has been eval-
uated through simulations in MATLAB and with real signals using
the FPGA-based implementation, under white Gaussian noise and
receiver impairments such as frequency offset and I/Q imbalance.
Its effectivity has also been compared in simulation with an opti-
mal cyclostationary-based classifier.

The remainder of the paper is organized as follows: Section 2
provides a detailed description of the modulation classifier. The
performance of the system through simulations is shown in Sec-
tion 3. Section 4 describes the FPGA implementation, the real-
time performance of the algorithm with real signals and the com-
putation complexity. Finally, the conclusions of the paper are pre-
sented in Section 5.

2. Cyclostationary-based modulation classifier

The modulation classifier is composed of two parts; the cyclo-
stationary characteristics are first extracted, after which a naïve
Bayes-based classifier establishes the modulation format. Both
cyclostationary extractor and classifier are explained in this sec-
tion. Since a reduced-complexity FPGA implementation is targeted,
a low-complexity approach of the algorithms has been designed.

2.1. Cyclostationary characteristics extraction

The first step is to extract the cyclostationary features of the
received signal, which will allow for modulation classification.
Generally, modulated signals are cyclostationary, which means
that their autocorrelation is periodic. This periodicity is normally
due to cyclic prefix, synchronization frames, preambles and/or
modulation itself, among other reasons. [8]. Therefore, the autocor-
relation of a cyclostationary signal (x) can be expressed by Fourier
Series:

Rxðt; t þ sÞ ¼
X1
a¼0

Rax ðsÞej2pat ; ð1Þ

where s is the lag, a is the cyclic frequency and Ras is the cyclic auto-
correlation, which corresponds to the coefficients of the Fourier Ser-
ies, defined as:

Rax ðsÞ ¼ lim
T!1

Z T=2

�T=2
xðtÞx�ðt � sÞe�j2patdt; ð2Þ

which for discrete-time signals could be approximated by:

Râx ½d� ¼
1
N

XN�1

n¼0

x½n�x�½n� d�e�j2pânN ; ð3Þ

where â is a in the discrete domain and N is the number of samples
of the discrete signal. In cyclostationary signals, there are some val-
ues of a and s (â and d for discrete-time signals) which make the

cyclic autocorrelation different from zero. These values depend on
the periodicity of the autocorrelation. Moreover, different modula-
tions have different cyclostationary characteristics, which allow
the distinction between them.

The classifier extracts some cyclostationary characteristics of
the received signals according to Eq. (3). Then, these characteristics
are normalized by the energy of the received signal. In particular, 3
characteristics are computed, for 3 pairs of â and d

(Râx ½d� ¼ R0
x ½2�;R0

x ½4�;R32
x ½0�). These 3 characteristics allow distin-

guishing OFDM, QPSK and GFSK signals for a received signal length
of N ¼ 200 samples and a sampling frequency of 40 MHz. Table 1
summarizes the main parameters of the considered OFDM, QPSK
and GFSK modulations.

The higher bandwidth in the OFDM signals leads to a narrower
autocorrelation, as shown in Fig. 1. Therefore, R0

x ½2� allows distin-
guishing between OFDM and QPSK or GFSK signals. Likewise, the
GFSK signal can be distinguished from QPSK because of its nar-
rower autocorrelation, being R0

x ½4� used to compute this distinction.

However, R0
x ½4� is not sufficient and another characteristic, R32

x ½0�, is
used because it becomes zero for GFSK signals, as shown in Fig. 2.

To show how distinctive these characteristics are for different
modulations, their values are represented for several OFDM, QPSK
and GFSK signals in Fig. 3a and b (SNR = 15 dB) and 3c and 3d
(SNR = 30 dB). These results also show, as stated before, that OFDM
signals can be identified using R0

x ½2�, while QPSK and GFSK signals

can be distinguished using R0
x ½4� and R32

x ½0�.

2.2. Modulation classifier

A naïve Bayes classifier has been used in order to determine the
modulation of the received signal using the extracted characteris-
tics. This classifier applies the Bayes theorem to take decisions,
which means that it decides the more probable hypothesis.

The detector obtains R0
x ½2�;R0

x ½4� and R32
x ½0�, and compares these

values with two thresholds. The thresholds have been fixed in
function of the Probability Density Function (PDF) of every modu-

Table 1
Parameters of the signals detected by the classifier.

Bandwidth FFT Size Cyclic Prefix Modulation

QPSK 6,4 MHz – – –
GFSK 6,4 MHz – – –
OFDM 20 MHz 64 16 16-QAM
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Fig. 1. Autocorrelacion (R0
x ½d�) of OFDM, QPSK and GFSK signals.
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