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a  b  s  t  r  a  c  t

Given  a  linear  program,  a desired  optimal  objective  value,  and  a set  of feasible  cost  vectors,  one  needs
to  determine  a cost  vector  of  the  linear  program  such  that the  corresponding  optimal  objective  value  is
closest  to the  desired  value.  The  problem  is  always  known  as  a standard  inverse  optimal  value problem.
When  multiple  criteria  are  adopted  to determine  cost  vectors,  a  multi-criteria  inverse  optimal  value
problem  arises,  which  is  more  general  than  the  standard  case.  This  paper  focuses  on  the  algorithmic
approach  for  this  class  of problems,  and  develops  an  evolutionary  algorithm  based  on  a dynamic  weighted
aggregation  method.  First,  the  original  problem  is  converted  into  a bilevel  program  with  multiple  upper
level objectives,  in  which  the  lower  level  problem  is  a linear  program  for each  fixed  cost  vector.  In addition,
the  potential  bases  of  the lower  level  program  are  encoded  as  chromosomes,  and  the weighted  sum of the
upper level  objectives  is  taken  as  a new  optimization  function,  by  which  some  potential  nondominated
solutions  can  be  generated.  In the  design  of  the  evolutionary  algorithm  some  specified  characteristics
of  the problem  are  well  utilized,  such  as the  optimality  conditions.  Some  preliminary  computational
experiments  are  reported,  which  demonstrates  that  the  proposed  algorithm  is efficient  and  robust.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

General optimization problems are to determine the values
of variables such that the objectives can achieve the optima on
the condition that all coefficients are given in objectives and
constraints. Inverse optimization is to execute an ‘inverse’ pro-
cedure, that is to infer some parameters in objective function
or in constraints such that the optimal solutions satisfy a pre-
specified standard. A standard inverse optimization problem can be
described as follows: given an optimization problem P : min

x∈X
cT x and

a desired optimal solution x ∈ X, determine a cost vector c such that
x is optimal to problem P. In addition, some additional conditions on
c are often taken into account. For example, c should be as close to
a pre-determined vector c′ as possible under some �p-norm, that is,
the deviation ‖c − c′ ‖ p should be minimized. This problem was  first
introduced by Burton and Toint [1,2] in a shortest path problem, in
which all weights on edges need to be determined such that some
pre-specified edges can form the short-path. In this class of prob-
lems, the objective function is also decided by the selected measure
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norm. For instance, when the deviation is evaluated by �2-norm, the
objective function of inverse optimization can be transformed into
a convex quadratic function [1]. If P is a linear program, and �1 and
�∞ norms are adopted, linear programming can be utilized to deal
with this class of problems [3,4]. For a comprehensive survey of the
literature on inverse optimization, please refer to [5].

If the problem is to find a vector c such that the objective value
is equal or close to a pre-specified value, the problem is known
as an inverse optimal value problem. Obviously, the inverse opti-
mal  value problem is a generalized version of the standard inverse
optimization problem, because the objective values must be close
to each other when two optimal solutions approach for any con-
tinuous functions. This kind of problems can be stated as follows:
given an optimization problem P, a desired optimal objective value
z*, and a set C of feasible cost vectors, determine a cost vector c* ∈ C
such that the corresponding optimal objective value of P is clos-
est to z* [6,7]. The inverse optimal value problem has received little
attention in the literature. Berman [8] discussed a minimal location
model, which is to determine edge lengths in a graph such that the
induced minimal distance from a given vertex to all other vertices is
within prescribed bounds, and shows the problem is NP-complete
for general graphs.

This paper is motivated by an application in telecommunication
bandwidth pricing proposed by Paleologo and Takriti [9]. In this
research, the problem the authors consider is to infer the correct
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prices on city-to-city links on its bandwidth network, such that
the total price of the links on the cheapest path between arbitrary
two cities should be close to the pre-specified one. The problem is
modeled as a directed graph with m nodes and n arcs, in which the
length associated to each arc is the unknown price. Mathematically,
the problem is to determine the length cj of each arc j, j = 1, . . .,  n, so
that the length of the shortest path between a node pair is equal to a
given value. We  denote by K the number of origin-destination pairs
for which the desired shortest distance pk is known. The problem
becomes that of finding a nonnegative c such that⎧⎪⎨
⎪⎩

min
xk

cT xk = pk,

s.t. Axk = bk, xk ≥ 0.

k = 1, . . .,  K

(1)

Alternatively, we may  formulate the problem as a multi-criteria
optimization problem

min
c≥0

(f1(c), . . .,  fK (c)) (2)

Here, fi(c) = |min
xi∈Xi

cT xi − pi|, Xi = {xi|Axi = bi, xi ≥ 0}, i = 1, . . .,  K, C

is a feasible region and | . | denotes the absolute value. In fact, the
bandwidth pricing problem is essentially a multi-criteria inverse
optimal value problem [7,9].

For the case in which K = 1 is a trivial one, Ahmed and Guan
[7] showed that the inverse optimal value problem is NP-hard in
general, and for the case that the set of feasible cost vectors is
polyhedral, the authors developed an algorithm for the problem
based on solving linear and bilinear programming problems. Lv [6]
proposed a bilevel programming model and applied the duality
principle of linear program to transform the problem into a sin-
gle level nonlinear program. Then, a penalty function method was
used to solve the equivalent problem. Despite the fact that these
procedures are efficient for the trivial case (single-objective inverse
optimal value problem), they cannot be extended directly to multi-
criteria cases. From the multi-objective point of view, Paleologo and
Takriti [9] suggested a mixed-integer programming formulation by
the weighted sum of the objectives for this bandwidth pricing prob-
lem. However, it can only give one optimal solution in each run of
the algorithm and needs to solve a mixed-integer program which
is computationally intractable.

In fact, problem (2) is a special multi-criteria bilevel pro-
gramming problem (MCBLPP). MCBLPP describes a hierarchical
structure, the constraint region of the first level problem (leader’s
problem/upper level problem) is implicitly determined by the sec-
ond level optimization problem (follower’s problem/lower level
problem), and the upper and/or lower levels have more than one
objective. At present, some algorithmic approaches and theoretical
results have been developed for this kind of the problems [10–13].
In optimization procedures involving multiple objectives, some
population-based algorithms have been widely adopted since these
algorithms can provide a Pareto optimal front for various prefer-
ences, such as evolutionary algorithm (EA) and it’s variations. Deb
[13] proposed an efficient EA for solving MCBLPPs, which almost
puts no requirements on all functions involved, such as convex or
differentiable. But for problem (2) in which the lower level is sin-
gle objective and is also linear for any fixed cost vector c, these
procedures are computation-expensive.

The purpose of this paper is to discuss a special MCBLPP which
is a generalized version of problem (2) and then provide an effi-
cient approach for solving most of inverse optimization problems
with multiple criteria. Based on the proposed MCBLPP model, we
develop an efficient EA by taking advantage of a dynamic weighted
aggregation method as well as the optimality conditions of the opti-
mization problem. In our approach, the potential bases of the lower

level program are encoded as chromosomes, and the weighted
sum of the upper level objectives is taken as a new optimization
function, by which some potential nondominated solutions can be
generated. It is worth noting that the coding scheme makes the
algorithm evidently different from other EAs, such as Deb’s method
using NSGA-II, mainly because the coding technique makes the
search space become finite even for a continuous MCBLPP.

This paper is organized as follows. Multi-criteria bilevel pro-
gramming model is proposed and some basic notations are
presented in Section 2, and Section 3 gives evolutionary opera-
tors and displays our algorithm. Some computational examples
are given and solved in Section 4. We  finally conclude our paper
in Section 5.

2. Multi-criteria bilevel programming model

Problem (2) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
c≥0

(|cT x1 − p1|, . . .,  |cT xK − pK |)
min  cT x1

s.t. Ax1 = b1, x1 ≥ 0;

min  cT x2

s.t. Ax2 = b2, x2 ≥ 0;

. . .

min  cT xK

s.t. AxK = bK , xK ≥ 0.

(3)

Obviously, the problem is a multi-criteria bilevel programming
problem with multiple lower level problems. Note that no common
variables are shared between arbitrary two  lower level problems,
therefore it is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
c≥0

(|cT x1 − p1|, . . .,  |cT xK − pK |)

min
K∑

i=1

cT xi

s.t. Axi = bi, xi ≥ 0, i = 1, . . .,  K.

(4)

Further, set

c1 = (cT , 0, . . .,  0︸  ︷︷  ︸
K

)

. . .

cK = (0,  . . .,  0, cT︸  ︷︷  ︸
K

)

and

x = (xT
1, . . .,  xT

K )
T
, C = c1 + · · · + ck

Then, (4) can be reformed as

⎧⎪⎨
⎪⎩

min
c≥0

(|c1x − p1|, . . .,  |cK x − pK |)
min  Cx

s.t. diag(A)x = b, x ≥ 0

(5)
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