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a b s t r a c t

For multi-objective design of multi-parameter antenna structures, optimization efficiency and computa-
tional cost are two major concerns. In this paper, an improved multi-objective evolutionary algorithm
based on decomposition (MOEA/D) is proposed to improve global optimization capability by diversity
detection operation and mixed population update operation. Further, in order to reduce the computa-
tional cost, a hybrid optimization strategy integrating a dynamically updatable surrogate-assisted model
into the improved MOEA/D is proposed. The numerical results of test functions show that our algorithm
outperforms original MOEA/D, modified MOEA/D (M-MOEA/D), and nondominated sorting genetic algo-
rithm II (NGSA-II) in terms of diversity. Experimental validation of Pareto-optimal planar miniaturized
multiband antenna designs is also provided, showing excellent convergence and considerable computa-
tional savings compared to those previously published approaches.

� 2016 Elsevier GmbH. All rights reserved.

1. Introduction

Contemporary antenna usually requires simultaneous handing
of multiple objectives. In order to accurately evaluate the antenna
response, a high-fidelity electromagnetic (EM) simulation is neces-
sary. However, accurate EM analysis is computationally expensive
due to the need of repetitive parameter sweeps, which poses a
large challenge for multi-objective antenna design [1,2].

Automated multi-parameter antenna optimization using evolu-
tionary algorithms (EAs) provides a new way for antenna designs
because it does not need a prior preference regarding design objec-
tives (which is usually either not obtainable or not desirable). EAs
have been successfully applied to multi-objective optimization
problems (MOP) related to antenna and array designs, such as
genetic algorithm (GA) [3–5], particle swarm optimization (PSO)
[6,7], and nondominated sorting genetic algorithm (NSGA) [8]. In
these schemes, a MOP is either converted into a single objective
optimization problem (SOP) using some composition approaches
[3–7], or treated as a whole [8]. In these implementations, a weight
vector responses to one search direction in design space so that
computational cost could be unendurable due to low searching
efficiency. In [9], a multi-objective evolutionary algorithm based

on decomposition (MOEA/D) was proposed for solving MOPs. In
this algorithm, a MOP is explicitly decomposed into a number of
scalar subproblems which can be optimized simultaneously. By
using the information of solutions of neighboring subproblems,
simultaneous optimization of these decomposed subproblems
results in a considerable reduced computational cost. As one of
the most popular multi-objective optimization techniques,
MOEA/D has been successfully applied to array synthesis [10,11].
However, different from array synthesis, the direct utilization of
MOEA/D in the multi-parameter antenna designs may be still diffi-
cult if high-fidelity EM simulations are involved. Fortunately, the
surrogated-based optimization techniques developed recently by
Koziel et al. [1,2,12–15] have proved to be computationally effi-
cient than the traditional EM-driven approaches.

In this work, aiming at improving optimization efficiency and
computational cost, we propose an improved MOEA/D algorithm
expedited with surrogate-assisted model for fast multi-objective
design of multi-parameter antenna structures. In our improved
MOEA/D, a diversity detection operator is adopted to judge the
level of population diversity and then a mixed population update
operation is performed to increase population diversity while pre-
serving beneficial individuals. The performance of our improved
MOEA/D is validated by several test functions. Moreover, in order
to greatly reduce the computational cost of antenna design pro-
cess, a hybrid optimization strategy integrating a dynamically
updatable surrogate model into the improvedMOEA/D is proposed.
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This strategy allows us to obtain a set of Pareto-optimal designs at
a very low computation cost. The results of a miniaturized multi-
band planar antenna design are also presented, showing the supe-
riority of our approach in terms of computational cost and solution
diversity over other reported approaches.

2. Problem formulation

In this section, we briefly describe the formulation of the multi-
objective antenna design problem. Generally, the multi-objective
design of multi-parameter antenna structures can be stated as a
MOP

min FðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ; . . . ; f mðxÞÞT
s:t: x 2 X

(
ð1Þ

where f kðxÞ; k ¼ 1;2; . . . ;m is the kth design objective. A typical
objective is to ensure jS11j < �10 dB over a certain frequency band
of interest, and to minimize the antenna reflection over that band.
Also, there might be some other objectives with respect to antenna
size, gain, efficiency, and so on. X is a design space, and
x ¼ ðx1; . . . ; xnÞ is a vector of n design variables defining a particular
antenna structure. In multi-objective antenna design, the target is
to obtain the Pareto front (PF) [1,2], i.e., multiple designs represent-
ing the trade-off between various characteristic of the antenna
under consideration.

For multi-objective optimization, any two designs x and y for
which f kðxÞ < f kðyÞ and f lðxÞ < f lðyÞ for at least one pair k– l, are
not commensurable, i.e., none is better than the other in the
multi-objective sense [1,2]. We define the Pareto dominance rela-
tion � saying that for the two designs x and y, we have x � y (x
dominates y) if f kðxÞ 6 f kðyÞ for all k ¼ 1;2; . . . ;m and
f kðxÞ < f kðyÞ for at least one k [1,2,16]. The multi-objective opti-
mization aims to find a representation of a Pareto front Xp (viz.
Pareto-optimal set) of the design space X, such that for any
x 2 Xp, there is no y 2 X for which y � x [1,2,16].

3. Design methodology

3.1. Improved MOEA/D

MOEA/D is one of the most popular optimization algorithms in
solving MOPs. In MOEA/D implementation, it is necessary to
decompose the MOP under consideration [9]. Let k1; . . . ; kN be a
set of N evenly distributed weight vectors and z� be the reference
point. The problem of the PF approximation in (1) can be decom-
posed into N scalar optimization subproblems by using several
decomposition approaches (e.g., the Tchebycheff approach) and
the objective function of the jth subproblem is

gteðxjk j; z�Þ ¼ max
16i6M

fk j
i jf iðxÞ � z�i g ð2Þ

where k j ¼ ðk j
1; . . . ; k

j
MÞ. MOEA/D features excellent optimization

efficiency by minimizing all objective functions simultaneously in
a single run.

In MOEA/D, the neighborhood size (viz. T in [9]) plays a key role
in algorithm performance. A smaller T leads to a good local opti-
mization capability and hence fast convergence. Considering the
heavy burden of antenna simulations, a smaller value of T is usu-
ally preferred in multi-parameter antenna design. However, a
smaller T may result in degraded population diversity and tend
to prematurity. Accordingly, it is necessary to develop a scheme
to improve diversity for a small value of T. In our proposed algo-
rithm, two improvements are introduced: (a) a diversity detection
operator is designed to judge the level of population diversity; (b)
population update is performed partially by random disturbance

strategy and partially by a nondominated sorting strategy (NDS)
in order to improve the diversity while keeping promising individ-
uals. A detailed description of the improvements is given as
follows:

3.1.1. Operation (a): diversity detection
Variance can measure how far a set of data are spread out in

probability theory and statistics. So, we introduce this concept to
measure the degree of aggregation of population. First, we define
the fitness variance of population, r2, as follows,

r2 ¼ 1
M

1
N

XM
i¼1

XN
j¼1

f ij � f iavg
f

� �2

ð3Þ

where f ¼ maxf1;max jf ij � f iavg jg; ði 2 ½1;M�; j 2 ½1;N�Þ, M and N are
the number of objectives and population size, respectively; f ij and
f iavg are the fitness of the jth individual and the mean fitness of pop-
ulation for the ith objective, respectively. The lower the value of r2

is, the more similarities there are among the individuals; and vice
versa.

Then by comparing the value of r2 with a preset threshold, we
can judge whether premature occurs or not. We define the thresh-
old function, H(t), as follows

HðtÞ ¼ Hmax � ðHmax � HminÞ � t
MaxIter

ð4Þ

where Hmax and Hmin are the maximum and minimum thresholds,
respectively; t is the iteration index and MaxIter is the number of
total iteration. If the value of r2 is smaller than the value of H(t),
local optimum will occur. Considering that the population diversity
decreases with the number of iteration, a time-variant decreasing
threshold function is designed. Specifically, a larger threshold is
set at the initial stage of evolution to reduce the possibilities of fall-
ing into local minima; while with the increase of the iteration num-
ber, a gradually decreased threshold is set to track the state of
population accurately.

3.1.2. Operation (b): mixed population update
Let P denote the current population and Pa denote an alternative

population which is used for the storage of promising individuals.
When local minima occurs, a sub-population Ps consisting of Nr

individuals is first selected from the current population randomly

Nr ¼ roundðq� NÞ ð5Þ
where q is an alterable re-selection factor, round is a function that
rounds to the nearest integer. The duplicate version of sub-
population Ps is stored in the alternative population Pa to avoid
missing promising individuals in the next operation of random dis-
turbance on Ps.

Then, a random disturbance operator is performed on each indi-
vidual of the sub-population Ps,

x0k ¼ xk � 1þ k
2

� �
ð6Þ

where xk and x0k are the previous and updated version of a selected
individual k ðk ¼ 1;2; . . . ;NrÞ, respectively; k is a random variable
with the standard normal distribution in [0,1]. For the remaining
N � Nr individuals in P, they will be updated together with the alter-
native population Pa by a nondominated sorting strategy (NDS) [17].
Then, the updated population can be expressed as

P ¼ Ps þ NDSððP � PsÞ [ PaÞ ð7Þ
It can be seen from (7) that both selected individuals with random
disturbance and those promising individuals with NDS are applied
to the next evolution to increase the population diversity and
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