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So far, there are known conditions on a polynomial’s coefficients so that it is a permutation polynomial
(PP) modulo a given positive integer number only for degrees up to three. For polynomials of degrees
higher than three, we only know the conditions so that they are PPs modulo a power of two. In this paper,
we propose a coefficient test for fourth degree polynomials to be PPs over integer rings. The test is useful
for finding fourth degree PPs for different applications in communications such as interleavers for turbo

© 2016 Elsevier GmbH. All rights reserved.

1. Introduction

An interleaver is a critical component of a turbo code. The alge-
braic interleavers, especially permutation polynomial (PP) based
ones, are preferred because of several advantages: analytical
design, outstanding performances and simple, practical implemen-
tation with high-speed, low-power consumption and little mem-
ory requirements [1-4].

From the category of PP based interleavers, the quadratic per-
mutation polynomial (QPP) [1-4] and then, the cubic permutation
polynomial (CPP) [5,6] based ones received the most attention.

For using PP interleavers in practical applications, it is necessary
to know the coefficients of the polynomial describing the inter-
leaver. A brute-force exhaustive search is impractical when the
number of PPs is large. Therefore, we require the conditions on a
polynomial’s coefficients so that it is a PP one. So far, we have
known the conditions for a polynomial of any degree to be a PP
modulo 2", with w a positive integer [7], the conditions for a poly-
nomial of second degree to be QPP [1-4], and the conditions for a
polynomial of third degree to be CPP [5,6]. This paper extends the
conditions in [5] for polynomials of fourth degree, so that they are
PPs (denoted 4-PPs).
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2. Results on permutation polynomials over integer rings

A PP based interleaver of degree d is of the form:
T(X) = qo + (X + @oX° + -+~ + ggx‘(mod  N) (1)

where N is the interleaver length and the coefficients
G, k=1,...,d are chosen so that m(x) from (1), with
x=0,1,...,N -1, is a permutation of the set of integers modulo
N, Zy = {0,1,...,N — 1}. Because the free term q,, only determines
a cyclic shift of the permutation elements, we will consider g, = 0.

LetP = {2,3,5,...} be the set of prime numbers. In the following,
the notation p|N means that p divides N, the notation ptN means that
p does not divide N and 7'(x) denotes the formal derivative of the
polynomial 7t(x). We recall the next two theorems, which are useful
for obtaining the results in Section 3, from [5].

Theorem 2.1. For any N = Hpe‘ﬁ,p”m 7t(x) is a PP modulo N iff m(x)
P

is also a PP modulo p™»,Vp such that ny, > 1.

Theorem 2.2. 7(x) is a PP modulo p", withn > 1, iff m(x) is a PP mod-

ulo p and ™ (x) # 0(mod p), for every integer x.

In this paper, we present a direct test on the coefficients
q1,4>,q3,q4 of a fourth degree polynomial, so that it is a 4-PP.

3. A coefficient test for fourth degree PPs

This section is similar to Section III in [5], but considers 4-PPs
instead of CPP. We still use the same three-step algorithm (given
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Table 1
A coefficient test for fourth degree PPs modulo p"

p=2 n=1 (g4, +q3+4q4)is odd
n>1 q;isodd, (q, +q4) is even, q; is even
p=3 n=1 (g, +gs) # 0(mod 3), (g +q4) = 0(mod 3)
n>1 q; #0(mod 3), (q; +q3) # 0(mod 3), g, = q4 = 0(mod 3)
(1) If g4 # 0(mod 7), then
(1.1) 3(g3)* = g>q4(mod 7), and
(1.2) 24, (q4)* = (43)° + (4)* (mod 7) or

24:(92)° = (g5)° + 6(q4)* (mod 7).
(2) If g4 = O(mod 7) then g, # 0(mod 7) and
4 = g3 = 0(mod 7).
n>1 g #0(mod 7),q, =q3 = q4 = 0(mod 7)

3fp—-1) n=1

p=7 n=1

q4 = 0(mod p) and

(p= (1) If g3 = 0(mod p) then q; # 0(mod p) and
or q; = 0(mod p).
p>7) (2) If g3 # O(mod p) then (q,)> = 3¢,43(mod p).

n>1 g, #0(mod p),q, =q; = q4 = 0(mod p)

\%
—_

3[p—-1) n
(p>7)

¢, # 0(mod p),q, = g3 = g4 = O(mod p)

below) to check if a fourth degree polynomial 7(x) is 4-PP, but the
conditions from Table 1 are different.

(1) Factor Nas N = H"Tﬁ’pnw‘
Pl

(2) For each p and the corresponding ny, from the previous step,
test if the conditions in Table 1 are satisfied.
(3) m(x) is a 4-PP iff all tests in step 2 are satisfied.

In the following, we prove that Table 1 is equivalent to Theo-
rem 2.2 for 4-PPs. The cases p=2 withn > 1, p=3 withn > 1
and p =7 with n=1 are addressed in Sections 3.1, 3.2 and 3.3,
respectively. Because of the similarity of the cases p=7 and
n>1,3|(p—1) with p>7 and n> 1, 3{(p—1) with p=5 or
p > 7 and n > 1, they are addressed together in Section 3.4. The last
case, when 3t(p — 1) withp=>5orp > 7 and n = 1, is addressed in
Section 3.5.

31.p=2

For p = 2, a simple test on the coefficients is given in [7], for any
degree of the polynomial. For the fourth degree, the conditions are
given in Table 1.

32.p=3

321.p=3andn=1

Theorem 3.1. 7t(X) = ¢,X + q,%*> + q3X> + q4x*(mod 3) is a PP iff
(41 +4g3) # O(mod 3) and (g, + q4) = O(mod 3).

Proof. As m(0) =0, it requires that

n(1) = ¢q; +q; + g3+ g, # 0 (mod 3), (2)
T(2) = 2q; +q; + 245 +q4 # 0 (mod 3), 3)
and

(1) # (2) (mod 3). (4)
Replacing (2) and (3) in (4), we have

(q1 +q5) # 0 (mod 3). ()

If ¢, +qg;=1(mod 3), then, from (2) it follows that
q, + g, = 0(mod 3) or g, +q, = 1(mod 3), and from (3) it follows
that ¢, +q,=0(mod 3) or q,+q,=2(mod3). Therefore,
q, + q, = 0(mod 3). For the case q; + q; = 2(mod 3) we can obtain
the same result in a similar way. O

322.p=3andn > 1

Theorem 3.2. 7(x) = q;x + ¢;x* + q3x3 + q4x*(mod 3"), withn > 1,
is a PP iff (qy+qs3)#0(mod3), g, =q,=0(mod 3) and
q; # 0(mod 3).

Proof. For the direct proof, we consider that 7(x) is a PP (mod 3"),
with n > 1. Then, according to Theorem 2.2, 7t(x) is a PP (mod 3)
and

T(X) = q; + 20X + 3¢3%° + 4q4%° (mod 3)
= q; +2q,x + q,X° # 0(mod 3). (6)

As m(x) is a PP (mod 3), from Theorem 3.1,, we have
(q; +g3) # 0(mod 3) and (q, + q4) = O(mod 3). Replacing x = 0 in
(6), we have 7'(0) = q; # 0(mod 3). Replacing x = 1 in (6), we have
(1) = q, + 2q, + q, # 0(mod 3). Because (q, + q4) = 0(mod 3), it
follows that

' (1) =q, + g, # 0(mod 3). (7)

Replacing x=2 in (6), we have 7(2)=q,+q,+2q,#
0(mod 3) and, because (q, + q,) = 0(mod 3), it follows that

T(2) = ¢; +qs # O(mod 3). 8)

Relations (7) and (8) must hold for any g, # O0(mod 3). For
¢, = 1(mod 3), from (7) it follows that g, = 0(mod 3) or g, =
1(mod 3), and from (8) that g, = 0(mod 3) or q, = 1(mod 3). For
¢, = 2(mod 3), from (7), it follows that g, = O(mod 3) or g, =
2(mod 3), and from (8) that g, =0(mod 3) or g, =2(mod 3).
Therefore, only the values g, = 0(mod 3) and q, = O(mod 3) meet
(7) and (8) for any g, # O(mod 3).

For the converse proof, because (q;+¢3)# 0(mod 3) and
q, = q, = 0(mod 3), it follows from Theorem 3.1 that 7(x) is a PP
(mod 3).

For ¢q,=q,=0(mod 3), from (6) we have that
7'(x) = q; # 0(mod 3). Then, according to Theorem 2.2, it results
that 7(x) is a PP (mod 3"), withn > 1. O

33.p=7andn=1
For this case, we need the following lemmas and propositions.
Proposition 3.3 [8]. A polynomial n(x) is a PP (mod p), with ptd, iff

an(x +b) + cis PP for all a # 0,b,c € Zp.

Definition 3.4 [8]. Let 7(x) = Zﬁzlqu"(mod p"). The polynomial
7(x) is a normalized PP if g; = 1, ®(0) = 0, and if p{d, then q;_; = 0.

Proposition 3.5 [9]. The only normalized fourth degree (mod 7) PPs
are 7(x) = x* + 3x(mod 7).

Lemma 3.6. Let 7(X) = q;X + q,x* + q5X> + q,x*(mod 7), where
q, # 0(mod 7). Then, m(x) can be factorized as m(x) = a((x +hy*+
3(x + b)) + c(mod 7), iff the following two conditions are fulfilled:

Commun (AEU) (2016), http://dx.doi.org/10.1016/j.aeue.2016.09.006

Please cite this article in press as: Trifina L, Tarniceriu D. A coefficient test for fourth degree permutation polynomials over integer rings. Int ] Electron



http://dx.doi.org/10.1016/j.aeue.2016.09.006

Download English Version:

https://daneshyari.com/en/article/4954174

Download Persian Version:

https://daneshyari.com/article/4954174

Daneshyari.com


https://daneshyari.com/en/article/4954174
https://daneshyari.com/article/4954174
https://daneshyari.com

