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27An adaptive filter with a large number of coefficients or taps results in slow convergence and increases
28the computational load. To overcome this problem, optimum tap-length selection algorithms for auto-
29matic structure adaption in linear adaptive filters have been proposed, which provide improved conver-
30gence rate without degrading the steady state performance. The most recent variable-tap length, variable
31step normalized least mean square algorithm with variable error spacing (VT-VSNLMSVE), employs a slid-
32ing windowweight update and achieves better results in reducing the structural as well as computational
33complexity compared to its predecessors. But it does not present a convergence and steady-state analysis
34of the proposed algorithm. In the present paper, we have made a convergence and steady state analysis of
35the VT-VSNLMSVE algorithm. A mathematical formulation of the variable step-size, mean square equa-
36tions and steady state tap-length is obtained that provides an idea regarding the applicability of the vari-
37able tap-length algorithm for many applications using higher-order adaptive filters. Computer
38simulations are presented in support of the algorithm analysis under predefined assumptions.
39� 2016 Elsevier GmbH. All rights reserved.
40

41

42

43 1. Introduction

44 The total number of weights in an adaptive filter is known as
45 the filter length or tap-length. It is a key parameter that affects
46 the convergence of adaptive algorithms [1]. In system identifica-
47 tion applications, adaptive filters are employed for acoustic echo
48 cancellation, feedback cancellation, noise compensation, etc. How-
49 ever, in certain specific applications like acoustic echo cancellation
50 there is a need of hundreds to thousands of filter weights to model
51 the unknown impulse response [2]. An improper selection of the
52 total number of filter coefficients may result in underestimated fil-
53 ter length that introduces extra error, while an overestimated filter
54 length brings extra computational burden [3]. Thus, the tap-length
55 optimization algorithms have received much attention. These algo-
56 rithms try to find the dynamically-varying filter order with faster
57 convergence rate and high accuracy [4]. The tap-length adaptation
58 is carried out until the coefficient requirement remains unchanged
59 with further increase in iterations and the unknown impulse
60 response is identified [5].

61Several tap-length optimization adaptive algorithms, such as
62the fractional tap-length least mean square algorithm (FT-LMS)
63[4], variable leakage factor based FT-LMS algorithm [6] and vari-
64able tap variable step LMS (VT-VSLMS) algorithm [7–9], have been
65presented to reduce the complexity of the adaptive designs and to
66improve the convergence. These existing algorithms bring their
67own limitations while selecting key parameters for tap-length
68adaptation, which have been highlighted in [10]. Similarly, the
69results concerning the convergence rate, steady state performance
70and minimum tap-length requirement vary from one variable tap-
71length algorithm to another. The variable tap-length, variable step
72normalized least mean square algorithm with variable error width
73(VT-VSNLMSVE) presented in [10] tries to remove the downsides of
74the existing algorithms in both high and low noise scenarios. The
75structure adaptation algorithm proposed in [10] maintains a
76trade-off between the mean square error and convergence. This
77paper presented a sliding window weight update algorithm along
78with the tap-length adaptation algorithm to reduce the tapped
79delay line filter design complexity as well as computational com-
80plexity in a comparatively improved manner. The parameters for
81finding the optimum filter weights are obtained dynamically
82rather than set to a randomly predefined value as in the FT-LMS
83algorithm. But, the article in [10] does not provide a convergence
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84 and steady state analysis for the proposed VT-VSNLMSVE
85 algorithm.
86 In this paper, a step size convergence and steady state perfor-
87 mance of the VT-VSNLMSVE tap-length optimization algorithm is
88 derived. At first, the sliding window weight update equation is
89 reviewed, which gives an insight to the step-size convergence.
90 Then, based on the tap-length learning equation, a mathematical
91 formulation for the mean square equations and steady state anal-
92 ysis are provided for linear FIR adaptive filters. The analysis and
93 associated discussion give an idea about the practical usability of
94 the variable tap-length algorithm. The rest of the paper is orga-
95 nized as follows. In Section 2, a brief description of the VT-
96 VSNLMSVE algorithm is presented. Section 3 presents the conver-
97 gence analysis, mean square equations and the steady state analy-
98 sis of the VT-VSNLMSVE tap-length adaptation algorithm. A
99 simulation study is provided in Section 4.

100 Throughout the paper, the following notations are adopted, E[.]
101 for the expected value, min {.} for the minimum of, (.)T for the
102 transpose of a vector or matrix, tr{.} for the trace operation, h.i
103 for converting a fractional value to the nearest integer, k.k norm
104 of a vector, k.k2 for the l2 norm, det[.] for the determinant, diag[.]
105 for the diagonal elements of a matrix.

106 2. The VT-VSNLMSVE tap-length optimization algorithm

107 In the VT-VSNLMSVE tap-length adaptation algorithm [10], the
108 weight update is carried out using a sliding window technique as
109

wLðnÞðnþ KÞ ¼ wLðnÞðnÞ þ lLðnÞðnÞ
XnþK�1

i¼n

eLðnÞðiÞxLðnÞðiÞ; ð1Þ
111111

112 where L(n) is the instantaneous variable tap-length obtained from
113 the tap-length optimization algorithm, 0 < K < L(n) is the sliding
114 window frame size and lL(n)(n) is the variable step-size, which is
115 expressed as
116

lLðnÞðnÞ ¼
l0

r2
x;nþK�1ðLðnÞ þ 2Þ ; ð2Þ

118118

119 where l0 is a constant [10], r2
x;nþK�1 is the variance of input signal

120 with n + K � 1 initial coefficients. The segmented error with respect
121 to tap-length L(n) is given by
122

eLKðnÞ ¼ dðnÞ � yðnÞ; ð3Þ124124

125 where
126

yðnÞ ¼
XnþK�1

i¼n

wLðnÞðiÞxLðnÞðiÞ ¼ wLðnÞ;1:KðnÞxT
LðnÞ;1:KðnÞ; ð4Þ

128128

129

dðnÞ ¼ wLopt ðnÞxT
Lopt ðnÞ þ tðnÞ; ð5Þ131131

132 wL(n),1:K(n) = [w1(n), w2(n), . . ., wL(n)(n)]T, xL(n),1:K(n) = [x(n), x
133 (n � 1), . . ., x(n � L(n) + 1)]T with 1:K denoting the frame size of slid-
134 ing window, Lopt is the optimum filter order, wLopt ðnÞ and xLopt ðnÞ are
135 the weight vector and input vector respectively, pertaining to opti-
136 mum tap-length and t(n) is the zero mean white Gaussian additive
137 noise.
138 The mean square segmented error is obtained as
139

QL
KðnÞ ¼ E½ðeLKðnÞÞ

2�: ð6Þ141141

142 The cost function used for finding the optimum tap-length in
143 the VT-VSNLMSVE algorithm is defined as the difference between
144 the mean square error (MSE) at two different filter coefficients sep-
145 arated by error spacing DL as
146

minfLjQL�DL
� QL 6 ng; ð7Þ148148

149where n is a small positive threshold value, defined as the ratio of a
150positive constant Wn that restricts the tap-length to attain a large
151value and the tap-length adaptation step-size �Wn [10]. Both these
152parameters are derived in [10]. Finally, the tap-length optimization
153algorithm is obtained as
154

Lf ðnþ 1Þ ¼ Lf ðnÞ �Wn þu �WnQ
L
DFðnÞ; ð8Þ 156156

157where Lf(n) is the fractional tap-length, which is finally rounded to
158the nearest integer as L(n) = hLf(n)i, u = sgn(Lf(n) � Lf(n � 1)). Both
159the parameters are set as per the analysis made in [10] and the esti-
160mate of the difference of the mean square errors is
161

QL
DFðnÞ ¼ ðeLK;LðnÞðnÞÞ

2 � ðeLK;LðnÞ�DLðnÞðnÞÞ
2
: ð9Þ 163163

1643. The algorithm analysis

165In this section, the variable tap-length, variable step normalized
166least mean square algorithm with variable error width, is analysed
167further by deriving the following:

168(i) The step-size convergence
169(ii) Mean square equations
170(iii) Steady-state performance
171

1723.1. The step-size convergence

173The weight update equation in the VT-VSNLMSVE is based on a
174sliding window approach, where the frame size of each window is
175K and 1 < K < L(n). For convergence analysis, each frame can be con-
176sidered as a sub-vector of the actual weight vector. If we consider P
177to be the number of sub-vectors each with a frame size K, then the
178desired signal in (5) can be modified as
179

dðnÞ ¼
XP
j¼1

wj;Loptx
T
j;Lopt ðnÞ þ tðnÞ ð10Þ

181181

182where wj;Lopt ¼ ½w1;1;w1;2; . . . ;wj;Lopt �T is the Wiener optimum
183solution of the jth sub vector and xj;Lopt ðnÞ ¼ ½xðn� ðk1 þ k2þ
184. . .þ kjÞÞ; xðn� ðk1 þ k2 þ . . .þ kjþ1ÞÞ . . . . . . ; xðn� ðk1 þ k2 þ . . .þ kjþ
185Lopt � 1ÞÞ�T is the input sequence for the sliding window approach.
186Similarly, the output of adaptive filter in (4) is represented as
187

yðnÞ ¼
XP
j¼1

wj;LðnÞðnÞxT
j;LðnÞðnÞ; ð11Þ

189189

190Also, the error signal in (3) can be rewritten as
191

eLKðnÞ ¼ ej;LðnÞ ¼ dðnÞ �
XP
j¼1

wj;LðnÞðnÞxT
j;LðnÞðnÞ: ð12Þ

193193

194The weight adaptation equation in (1) can be presented in a
195modified form as
196

wj;LðnÞðnþ 1Þ ¼ wj;LðnÞðnÞ þ lj;LðnÞðnÞxj;LðnÞðnÞej;LðnÞðnÞ: ð13Þ 198198

199For convergence analysis, let us define the weight error vector
200for the jth sub-vector as
201

fjðnÞ ¼ wj;LðnÞðnÞ �wj;Lopt ðnÞ: ð14Þ 203203

204Assuming the input signal to be independent of the additive
205noise t(n), the mean square error is given as [11]
206

QðnÞ ¼ Qmin þ
XP
j¼1

Xp
l¼1

E½fjðnÞ�Rj;lE½flðnÞ� þ
XP
j¼1

trfRj;jE½fjðnÞfTj ðnÞ�g;

8j¼ 1;2; :::P and j–l

ð15Þ
208208

209where
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