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An adaptive filter with a large number of coefficients or taps results in slow convergence and increases
the computational load. To overcome this problem, optimum tap-length selection algorithms for auto-
matic structure adaption in linear adaptive filters have been proposed, which provide improved conver-
gence rate without degrading the steady state performance. The most recent variable-tap length, variable
step normalized least mean square algorithm with variable error spacing (VT-VSNLMSyg), employs a slid-
ing window weight update and achieves better results in reducing the structural as well as computational
complexity compared to its predecessors. But it does not present a convergence and steady-state analysis
of the proposed algorithm. In the present paper, we have made a convergence and steady state analysis of
the VT-VSNLMSy algorithm. A mathematical formulation of the variable step-size, mean square equa-
tions and steady state tap-length is obtained that provides an idea regarding the applicability of the vari-
able tap-length algorithm for many applications using higher-order adaptive filters. Computer

simulations are presented in support of the algorithm analysis under predefined assumptions.

© 2016 Elsevier GmbH. All rights reserved.

1. Introduction

The total number of weights in an adaptive filter is known as
the filter length or tap-length. It is a key parameter that affects
the convergence of adaptive algorithms [1]. In system identifica-
tion applications, adaptive filters are employed for acoustic echo
cancellation, feedback cancellation, noise compensation, etc. How-
ever, in certain specific applications like acoustic echo cancellation
there is a need of hundreds to thousands of filter weights to model
the unknown impulse response [2]. An improper selection of the
total number of filter coefficients may result in underestimated fil-
ter length that introduces extra error, while an overestimated filter
length brings extra computational burden [3]. Thus, the tap-length
optimization algorithms have received much attention. These algo-
rithms try to find the dynamically-varying filter order with faster
convergence rate and high accuracy [4]. The tap-length adaptation
is carried out until the coefficient requirement remains unchanged
with further increase in iterations and the unknown impulse
response is identified [5].

* The first part of this paper is presented in [10].
* Corresponding author. Tel.: +45 60909290.
E-mail addresses: asuka@es.aau.dk (A. Kar), swamy@ece.concordia.ca
(M.N.S. Swamy).

http://dx.doi.org/10.1016/j.aeue.2016.05.010
1434-8411/© 2016 Elsevier GmbH. All rights reserved.

Several tap-length optimization adaptive algorithms, such as
the fractional tap-length least mean square algorithm (FT-LMS)
[4], variable leakage factor based FT-LMS algorithm [6] and vari-
able tap variable step LMS (VT-VSLMS) algorithm [7-9], have been
presented to reduce the complexity of the adaptive designs and to
improve the convergence. These existing algorithms bring their
own limitations while selecting key parameters for tap-length
adaptation, which have been highlighted in [10]. Similarly, the
results concerning the convergence rate, steady state performance
and minimum tap-length requirement vary from one variable tap-
length algorithm to another. The variable tap-length, variable step
normalized least mean square algorithm with variable error width
(VT-VSNLMSyg) presented in [10] tries to remove the downsides of
the existing algorithms in both high and low noise scenarios. The
structure adaptation algorithm proposed in [10] maintains a
trade-off between the mean square error and convergence. This
paper presented a sliding window weight update algorithm along
with the tap-length adaptation algorithm to reduce the tapped
delay line filter design complexity as well as computational com-
plexity in a comparatively improved manner. The parameters for
finding the optimum filter weights are obtained dynamically
rather than set to a randomly predefined value as in the FT-LMS
algorithm. But, the article in [10] does not provide a convergence

Please cite this article in press as: Kar A, Swamy MNS. Convergence and steady state analysis of a tap-length optimization algorithm for linear adaptive
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and steady state analysis for the proposed VT-VSNLMSyg
algorithm.

In this paper, a step size convergence and steady state perfor-
mance of the VT-VSNLMSy¢ tap-length optimization algorithm is
derived. At first, the sliding window weight update equation is
reviewed, which gives an insight to the step-size convergence.
Then, based on the tap-length learning equation, a mathematical
formulation for the mean square equations and steady state anal-
ysis are provided for linear FIR adaptive filters. The analysis and
associated discussion give an idea about the practical usability of
the variable tap-length algorithm. The rest of the paper is orga-
nized as follows. In Section 2, a brief description of the VT-
VSNLMSyg algorithm is presented. Section 3 presents the conver-
gence analysis, mean square equations and the steady state analy-
sis of the VT-VSNLMSyg tap-length adaptation algorithm. A
simulation study is provided in Section 4.

Throughout the paper, the following notations are adopted, E[.]
for the expected value, min {.} for the minimum of, (.)” for the
transpose of a vector or matrix, tr{.} for the trace operation, (.)
for converting a fractional value to the nearest integer, |.|| norm
of a vector, ||.||> for the I, norm, det[.] for the determinant, diag].]
for the diagonal elements of a matrix.

2. The VT-VSNLMSyg tap-length optimization algorithm

In the VT-VSNLMSy¢ tap-length adaptation algorithm [10], the
weight update is carried out using a sliding window technique as

n+K-1

Z erm (1) Xy (1), (1)

i=n

Wiy (N + K) = Wy (1) + fy (1)

where L(n) is the instantaneous variable tap-length obtained from
the tap-length optimization algorithm, 0 <K< L(n) is the sliding
window frame size and py,y(n) is the variable step-size, which is
expressed as

Y ,
O->2<,n+1<71 (L(n)+2)’ (2)

where ' is a constant [10], 62, , is the variance of input signal
with n + K — 1 initial coefficients. The segmented error with respect
to tap-length L(n) is given by

ex(n) =d(n) —y(n), 3)

where

My (N) =

n+K-1

= 2 Wun (D () =

Win), 11((”)"[(;1).1:1((")7 (4)

d(n) = w,, (WX, (n) + t(n), ()

Wimy,1:x(1) = [wi(n), wy(n), ..., WL(n)(n)]T- Xi(m1:x(1) = [x(n), x
(n—1),...,x(n — L(n)+1)]" with 1:K denoting the frame size of slid-
ing window, Loy is the optimum filter order, wy,, (n) and X, (n) are
the weight vector and input vector respectively, pertaining to opti-
mum tap-length and t(n) is the zero mean white Gaussian additive
noise.
The mean square segmented error is obtained as
2

Qx(n) = E[(€k(m))7). (6)

The cost function used for finding the optimum tap-length in
the VT-VSNLMSyg algorithm is defined as the difference between
the mean square error (MSE) at two different filter coefficients sep-
arated by error spacing 4; as

min{L[Q; ,, — Q< &}, (7)

where ¢ is a small positive threshold value, defined as the ratio of a
positive constant ¥, that restricts the tap-length to attain a large
value and the tap-length adaptation step-size ¥, [10]. Both these
parameters are derived in [10]. Finally, the tap-length optimization
algorithm is obtained as

Li(n+1) = Le(n) — ¥ + P2 Qpe (), 8)
where L¢{n) is the fractional tap-length, which is finally rounded to
the nearest integer as L(n) = (L{n)), ¢ = sgn(L{n) — L{n — 1)). Both
the parameters are set as per the analysis made in [10] and the esti-
mate of the difference of the mean square errors is

QLDF(n) =

2 2

(ek‘L(n)(n)) - (ef(.L(n)—AL(n)(n)) . 9

3. The algorithm analysis

In this section, the variable tap-length, variable step normalized
least mean square algorithm with variable error width, is analysed
further by deriving the following:

(i) The step-size convergence
(ii) Mean square equations
(iii) Steady-state performance

3.1. The step-size convergence

The weight update equation in the VT-VSNLMSyk is based on a
sliding window approach, where the frame size of each window is
Kand 1 < K < L(n). For convergence analysis, each frame can be con-
sidered as a sub-vector of the actual weight vector. If we consider P
to be the number of sub-vectors each with a frame size K, then the
desired signal in (5) can be modified as

§ w] ’-opt ]ant

where Wi, = Wi, Wig, ... ,wj_Lopt]T is the Wiener optimum
solution of the j™ sub vector and X; Lope () = [x(n — (k1 + ka+-
k) x(n— (ke + ke o+ ki) xX(n—(ky + ko + ...+ K+
Lopt — 1))]" is the input sequence for the slldmg window approach.
Similarly, the output of adaptive filter in (4) is represented as

n) + t(n) (10)

P
= > Wism (MXy (1), (11)
=
Also, the error signal in (3) can be rewritten as

ex(n) = e

ZWJL m (1) (12)

The weight adaptation equation in (1) can be presented in a
modified form as

Wj 1) (1) + 4 ) ()X () (1) €.y (1) (13)
For convergence analysis, let us define the weight error vector

for the jth sub-vector as

§(n) = Wiy (1) — Wj L, (). (14)

Assuming the input signal to be independent of the additive
noise t(n), the mean square error is given as [11]

P p
= Qumin + ZZE

j=1I=1
Vji=1,2

Wim(n+1)=

)R E[g(n +Ztr{RuE[g mef (m]},

7.4.Pa1'1d]?5l

(15)

where
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