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a b s t r a c t

Total variation method has been widely used in image processing. However, it produces undesirable
staircase effect. To alleviate the staircase effect, some fourth order variational models were studied,
which lead to the restored images smoothing and some details lost. In this paper, a low-order variational
model for image deblurring and denoising is proposed, which is based on the splitting technique for the
regularizer. Different from the general split technique, the improved variational model adopts the L1
norm. To compute the new model effectively, we employ an alternating iterative method for recovering
images from the blurry and noisy observations. The iterative algorithm is based on decoupling of deblur-
ring and denoising steps in the restoration process. In the deblurring step, an efficient fast transforms can
be employed. In the denoising step, the primal–dual method can be adopted. The numerical experiments
show that the new model can obtain better results than those by some recent methods.

� 2016 Elsevier GmbH. All rights reserved.

1. Introduction

The problem of image restoration has been widely studied in
the last several years. The goal of image restoration is to recover
the true image f from the observed noisy image

u0 ¼ Hf þ g; ð1Þ

where u0 is the observed noisy image, H is a bounded linear opera-
tor representing the convolution, and g denotes the additive Gaus-
sian white noise.

Recovering f from u0 is a typical example of an inverse problem.
Since inverse problems are typically ill posed, a classical way to
overcome ill-posed minimization problems is to add some regular-
ization terms to the energy. This idea was firstly introduced by
Tikhonov and Arsenin [1] as follows:

min
f

Z
X
jHf � u0j2dxþ k

2

Z
X
jrf j2dx; ð2Þ

where k > 0 is a regularization parameter which balances the first
and second terms. However, this model has very strong isotropic
smoothing properties and tends to make images overly smooth, it
often fails to adequately preserve important image attributes such
as sharp edges. In order to overcome these drawbacks, the authors

in [2] used the Total Variation (TV) of f instead of the L2 norm of the
gradient of f and proposed the following model

min
f

Z
X
jHf � u0j2dxþ k

Z
X
jrf jdx: ð3Þ

Although the TV regularizer has the ability of preserving the edges,
it also gives rise to some undesired effects and transforms smooth
signal into piecewise constant, the so-called staircase effects. In
order to reduce the staircase effect, some high-order variational
models were introduced [3–8], which contain the second order TV
regularization terms. However, those high-order variational models
need more complex boundary conditions.

Due to the nondifferentiability and nonlinearity of the TV func-
tion, Eq. (3) is more difficult to solve, some fast algorithms sprang
up in recent years [9–13]. The authors in [9] used the variable-
splitting and penalty techniques to solve the model. Ref. [10] and
Ref. [11] put to use majorization–minimization method and alter-
nating direction method for the TV image deblurring problems. In
addition, the authors in [12,13] further studied the total bounded
variational models for image deblurring and denoising problems.
Nikolova et al. [14] studied nonconvex nonsmooth minimization
methods for image restoration. There are also other methods for
image deblurring, such as kernel regression [15], soft-
thresholding method [16,17], nonlocal method [18], and wavelet
method [19], etc.

Recently, to overcome the nondifferentiability and nonlinearity
of the TV function of f in Eq. (3), Huang, Ng and Wen [20] intro-
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duced a new auxiliary variable u and proposed a fast TV minimiza-
tion method as follows:

min
f ;u

1
2
kHf � u0k22 þ

k
2
kf � uk22 þ a

Z
X
jrujdx; ð4Þ

where k; a are positive regularization parameters. With this new
auxiliary variable u, Eq. (4) can be solved effectively by decoupling
of deblurring and denoising steps in the restoration process. In the
deblurring step, fast transforms can be employed. In the denoising
step, the TV model is solved by dual algorithm. Because the TV reg-
ularization term in Eq. (4) produces the staircase effect, in order to
reduce it, the authors in [4] used the second order TV of u instead of
the first order TV of u in Eq. (4) to design the following model

min
f ;u

1
2
kHf � u0k22 þ

k
2
kf � uk22 þ a

Z
X
jr2ujdx: ð5Þ

With the above model (5), the authors provided better results.
However, the high-order TV regularizer causes some edges and
details smoothed out, which are the very important characteristics
in the restored images.

Inspired by the splitting idea [20], we introduce an auxiliary
variable in the regularization term of Eq. (5) and divide the second
order derivative term into two low order terms. The aim is that it
not only can lower the order of image, but can alleviate the stair-
case effect. To solve the proposed model effectively, we also design
an alternating iterative algorithm. From the experimental results,
we see that the new model obtains better results than some cur-
rent state-of-the-art methods. In addition, the new model’s order
is lower than the fourth order, so it does not need the more com-
plex boundary condition than the fourth order diffusion equations.

In the rest of this paper, we will give the newmodel in Section 2.
In Section 3, we do some numerical experiments to test our algo-
rithm. Finally, Section 4 concludes this paper.

2. The proposed model and algorithm

2.1. The proposed model

From Eq. (4), we can see that it in fact splits the regularization
term f of Eq. (3) into two terms by introducing an auxiliary variable
u. When k goes to infinity, the solution of Eq. (4) converges to that
of Eq. (3). By the variable splitting, the operator of gradient and the
operator of convolution can be computed respectively, and Eq. (4)
can be solved by some fast algorithms effectively. Inspired by this
idea, we introduce a new auxiliary variable v and propose the fol-
lowing model

min
u;v;f

b
2

Z
X
ðHf � u0Þ2dx

þ k
2
kf � uk22 þ a1

Z
X
jru� vjdxþ a2

Z
X
jrvjdx; ð6Þ

where b; k; a1; a2 are the regularization parameters.
The proposed model has the following advantages: firstly, when

a1 ! 1, then v ¼ ru, and Eq. (6) turns into Eq. (5), that is, it con-
tains the second order TV, so it can reduce the staircase effect.
When a2 ! 1, then rv ! 0, the regularizer in Eq. (6) turns into
the first order TV which is similar to Eq. (4), and it has the ability
of preserving edges. All in all, Eq. (6) can automatically balance
the first and second order terms by the parameters a1;a2, and it
has the abilities of preserving the edges and reducing the staircase
effect, which has been proved in [21,22].

Secondly, our variable splitting is different from Eq. (4) and [9].
We adopt the L1 norm between vector v and the gradient of u not
the L2 norm. The advantage of this norm is that it can overcome the
shortcoming of overly smooth, because the Euler–Lagrange of the

L2 norm produces the Laplace operator, which can smooth edges
and details of the restored images.

From the above explanation, we can conclude that the proposed
model provides a way of balancing between the first and second
order of the objective function, so it can reduce the staircase effect
while denoising. Meanwhile, it has the properties of edge preserva-
tion which is very important in image deblurring.

2.2. The proposed algorithm

To solve the proposed model (6), we use the following alternat-
ing direction method. The iterative algorithm is based on decou-
pling of denoising and deblurring steps in the image restoration
process. It can be written into the following two minimization
subproblems:

(1) Denoising step. For f fixed, find the solutions of u;v

ðukþ1;vkþ1Þ ¼ argmin
u;v

a1

Z
X
jru� v jdxþ a2

Z
X
jrv jdx

þ k
2
kf k � uk22: ð7Þ

(2) Deblurring step. For u fixed, find the solution of f

f kþ1 ¼ argmin
f

b
2
kHf � u0k22 þ

k
2
kf � ukþ1k22: ð8Þ

We now give the corresponding algorithms for Eq. (7) and Eq.
(8) respectively. First, for Eq. (7), by applying the Legendre–Fenchel
transform, we obtain

argmin
u;v

a1

Z
X
jru� v jdxþ a2

Z
X
jrvjdxþ k

2
kf k � uk22

¼ argmin
u;v

max
p2P;q2Q

hru� v ; pi þ hrv ; qi þ k
2
kf k � uk22;

ð9Þ

where P¼ fp¼ ðp1;p2ÞT jpj6 a1j g; Q ¼ q¼ q11; q12
q21; q22

� �
jqj6 a2j

� �
,

p; q are the dual variables.
Applying the primal–dual method in [21,23] to Eq. (9), we can

get the iterative schemes as follows:

pkþ1 ¼ projPðpk þ dðr�uk � �vkÞÞ
qkþ1 ¼ projQ ðqk þ dðr�vkÞÞ
ukþ1 ¼ ukþskf kþsdivpkþ1

1þsk

vkþ1 ¼ vk þ sðpk þ div�hqkþ1Þ
�ukþ1 ¼ 2ukþ1 � uk

�vkþ1 ¼ 2vkþ1 � vk

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

where projPð~pÞ ¼ ~p
maxð1;j~pj=a1Þ ; projQ ð~qÞ ¼ ~q

maxð1;j~qj=a2Þ for any ~p; ~q; d; s
are positive parameters.

Second, for Eq. (8), its corresponding Euler–Lagrange equation is

bHTðHf kþ1 � u0Þ þ kðf kþ1 � ukþ1Þ ¼ 0; ð11Þ
so we have

ðkI þ bHTHÞf kþ1 ¼ ðbHTu0 þ kukþ1Þ: ð12Þ
Because of the regularized term kI, the coefficient matrix

ðkI þ bHTHÞ is always invertible. We can obtain a closed solution
for Eq. (12) as follows.

f kþ1 ¼ ðkþ bHTHÞ�1ðbHTu0 þ kukþ1Þ: ð13Þ
We note that when some boundary conditions, such as periodic
boundary conditions, zero boundary conditions, et al., are applied
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