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a  b  s  t  r  a  c  t

Time  series  forecasting  (TSF)  is  an  important  tool  to support  decision  making  (e.g.,  planning  production
resources).  Artificial  neural  networks  (ANNs)  are  innate  candidates  for TSF  due  to  advantages  such  as
nonlinear  learning  and  noise  tolerance.  However,  the  search  for the  best  model  is  a complex  task  that
highly affects  the  forecasting  performance.  In this  work,  we  propose  two  novel  evolutionary  artificial
neural  networks  (EANNs)  approaches  for TSF  based  on  an  estimation  distribution  algorithm  (EDA)  search
engine.  The  first  new  approach  consist  of sparsely  connected  evolutionary  ANN (SEANN),  which  evolves
more  flexible  ANN  structures  to perform  multi-step  ahead  forecasts.  The  second  one,  consists  of  an  auto-
matic  Time  lag  feature  selection  EANN  (TEANN)  approach  that  evolves  not  only  ANN  parameters  (e.g.,
input  and  hidden  nodes,  training  parameters)  but  also  which  set  of time  lags  are  fed  into  the  forecasting
model. Several  experiments  were  held,  using  a set of six  time  series,  from  different  real-world  domains.
Also,  two  error  metrics  (i.e., mean  squared  error  and  symmetric  mean  absolute  percentage  error)  were
analyzed.  The  two EANN  approaches  were  compared  against  a base  EANN  (with  no  ANN  structure  or
time  lag  optimization)  and  four  other  methods  (autoregressive  integrated  moving  average  method,  ran-
dom forest,  echo  state  network  and  support  vector  machine).  Overall,  the  proposed  SEANN  and  TEANN
methods  obtained  the  best  forecasting  results.  Moreover,  they  favor  simpler  neural  network  models,  thus
requiring  less  computational  effort when  compared  with  the  base  EANN.

© 2014  Elsevier  B.V.  All  rights  reserved.

Introduction

Nowadays, forecasting the future using past data is an impor-
tant tool to reduce uncertainty and support both individual and
organization decision making. For example, multi-step predictions
(e.g., issued several months in advance) are useful to aid tacti-
cal decisions, such as planning production resources. In particular,
the field of time series forecasting (TSF) deals with the predic-
tion of a given phenomenon (e.g., ice cream sales) based on the
past patterns of the same event. TSF has become increasingly used
in areas such as agriculture, finance, management, production or
sales.

Several Operational Research TSF methods have been pro-
posed, such as Holt-Winters (in the sixties) or the Autoregressive
Integrated Moving Average (ARIMA) methodology [30] (in the sev-
enties). More recently, several Soft Computing methods have been
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applied to TSF, such as Artificial neural networks (ANN) [13], evo-
lutionary computation (EC) [10] and fuzzy techniques [27] Also,
several hybrid systems that combine two or more soft computing
and/or forecasting techniques have been proposed for TSF, such as
proposed in [2,23,24,35].

This paper is focused on the use of ANN [20], which are a nat-
ural solution for TSF due to advantages such as flexibility (i.e., no
a priori knowledge is required), nonlinear learning and robustness
to noisy data. ANN were initially applied to TSF in 1987 [25] and
such research has been consistently growing since [13,33,44]. Some
examples of successful ANN forecasting applications are Internet
traffic [9], air pollution [34] and financial markets [24].

While several types of ANN have been proposed for TSF (e.g.,
radial-basis functions, recurrent networks), the majority of the
studies adopt the multilayer perceptron architecture [13,25,44]. In
particular, the time-lagged feedforward neural network (TLFN) is
a popular approach [9,20,33]. The TLFN adopts a multilayer per-
ceptron ANN as the learning base model and uses a sliding time
window method to create supervised training examples. The slid-
ing time window defines a set of time lags that are used as inputs
by the ANN.
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When adopting multilayer perceptrons for TSF (i.e., TLFN), a
crucial issue is the design of the best forecasting model, which
involves both feature and model selection [13,40]. The former is
required since a small set of time lags will provide insufficient infor-
mation to the ANN, while using a high number of time lags will
increase noise and probability of having irrelevant inputs. Indeed,
time lag selection is a core step of the ARIMA methodology, which
often selects the 1, 12 and 13 time lags for monthly seasonal and
trended series [30]. The latter selection is needed to get a good
generalization capacity, since a too complex ANN model will over-
fit the data, while a model that is too simple will present limited
learning capabilities. However, most ANN works for TSF adopt a
manual design for this feature and model selection that is ad hoc
(e.g., [9,12,22,25,33,44]), based either in domain knowledge or in
trial and error experimentation. An alternative is use Evolution-
ary Computation to search for the best ANN, in what is known
as Evolutionary ANNs (EANNs) [15,38,42]. Often, EANNs require
more computation when compared with manual ANN design, since
more ANNs are tested. Yet, EANNs are much more appealing to non
specialized users, given that few parameters need to be selected,
the search is fully automatic and more exhaustive, thus tending
to provide better performances when compared with the manual
design.

EANN systems have been treated mainly using three different
optimization points of view [6,42]: topology (e.g., number of hidden
layers, number of nodes in each layer); connection weights (e.g.,
values for each ANN connection); and learning rules (e.g., learning
factor). Within the TSF domain, the majority of EANN works make
use of rather rigid ANN structures that are fully connected, evolv-
ing only ANN hyperparameters, such as number of input and hidden
nodes [6,34]. For instance, once the number of inputs is set, all time
lags are adopted by the TLFN. Working with fully connected struc-
tures also means that ANNs can be more complex than needed. As a
consequence, these EANNs tend to require an heavy computational
effort. Moreover, most EANN works for TSF use the standard Genetic
Algorithm (GA) as the search engine, which requires setting several
parameters to (e.g., mutation rate, population size). The Estima-
tion Distribution Algorithm (EDA) is a more recent Evolutionary
Computation variant, proposed in 2001 [26], and that makes use
of exploitation and exploration properties to find good solutions.
When compared with other search methods (e.g., GA), EDA has the
advantage of requiring just one parameter (i.e., population size),
since crossover and mutation processes do not exist in EDA. Also,
EDA has a fast convergence and in recent previous work [35] it has
outperformed the standard GA and differential evolution methods
when selecting the best ANN TSF models.

In this paper, we propose two novel EANN variants for TSF
that are fully automatic and can be used by non specialized users
to perform multi-step ahead time series forecasts, since no a
priori knowledge is assumed from the analyzed time series. In
contrast with the majority of EANN works for TSF, the proposed
EANN variants make use of EDA as the search engine under
two design strategies: Sparsely connected EANN (SEANN) and
Time lag selection EANN (TEANN). Both strategies perform a
simultaneous feature and model selection for TSF, although with
a different emphasis. SEANN puts more effort in model selection
by explicitly defining if a connection exists and time lag deletion
only occurs when an input has no connections. TEANN enforces
feature selection, explicitly defining which time lags are used in
the chromosome, while ANN structure selection is made only in
terms of number of input and hidden nodes. These strategies are
addressed separately in order to measure the contribution of each
other when compared with the fully connected EDA EANN [35].
Moreover, we also compare all EANN methods with the popular
ARIMA methodology and three recently proposed machine learn-
ing methods: Random Forest (RF), Echo State Network (ESN) and

Fig. 1. Process to obtain training and validation sets.

Support Vector Machine (SVM). The experiments were performed
using several real-world time series from distinct domains and
the distinct forecasting approaches were compared under both
forecasting and computational performance measurements. The
paper is organized as follows. First, section “Evolutionary design
of artificial neural networks” described the EANN approaches.
Next, in section “Experimental setup and results” we  present the
experimental setup and analyze the obtained results. Finally, we
conclude the paper in section “Conclusions”.

Evolutionary design of artificial neural networks

Time series and ANN

The problem of forecasting time series with ANN [35] is consid-
ered as obtaining the relationship from the value at period yt (in this
system the resulting ANN will have only one output neuron) and
the values from previous elements of the time series, using several
time lags {t − 1, t − 2, . . .,  t − I}, to obtain a function:

ŷt = f (yt−1, yt−2, . . .,  yt−I) (1)

where ŷt denotes the estimated forecast, as given by the ANN (f),
and I the number of ANN input nodes.

In order to obtain a single ANN to forecast time series values, an
initial step has to be done with the original values of the time series,
i.e., normalizing the data. The original values (yt) are normalized
into the range [0, 1] (leading to the Nt values). Once the ANN outputs
the resulting values, the inverse process is carried out, rescaling
them back to the original scale. Only one neuron was chosen at the
output layer and multi-step ahead forecasts are built by iteratively
using 1-ahead predictions as inputs [9]. Therefore, the time series
is transformed into a patterns set depending on the k inputs nodes
of a particular ANN, each pattern consisting of:

• I inputs values, that correspond to I normalized previous values:
Nt−1, Nt−2, . . ., Nt−I.

• One output value: Nt (the desired target).

This patterns set will be used to train and validate (i.e., com-
pute fitness value) each ANN generated during the evolutionary
execution. Thus, the patterns set is split into two  subsets, using a
timely ordered holdout scheme with 70% of the elements for train-
ing and the most recent 30% elements for validation. We  note that
the 70/30 split is very common (e.g., [22,27]) and in [12] this split
provided better TSF results for ANN when compared with other
divisions (e.g., 60/40 and 80/20). As an example, Fig. 1 shows how
such training and validation sets are created with I = 3. Finally, after
evolving the ANN, the best model is evaluated on a test set, which
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