
Applied Soft Computing 23 (2014) 432–443

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Evolutionary optimization of sparsely connected and time-lagged
neural networks for time series forecasting

Juan Peralta Donatea, Paulo Cortezb,∗

a Universidad Autónoma de Barcelona, Edifici O, Campus UAB, Bellaterra, 08193 Barcelona, Spain
b ALGORITMI Research Centre, Department of Information Systems, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

a r t i c l e i n f o

Article history:
Received 31 October 2012
Received in revised form 24 June 2014
Accepted 24 June 2014
Available online 2 July 2014

Keywords:
Estimation distribution algorithm
Multilayer perceptron
Time series
Regression

a b s t r a c t

Time series forecasting (TSF) is an important tool to support decision making (e.g., planning production
resources). Artificial neural networks (ANNs) are innate candidates for TSF due to advantages such as
nonlinear learning and noise tolerance. However, the search for the best model is a complex task that
highly affects the forecasting performance. In this work, we propose two novel evolutionary artificial
neural networks (EANNs) approaches for TSF based on an estimation distribution algorithm (EDA) search
engine. The first new approach consist of sparsely connected evolutionary ANN (SEANN), which evolves
more flexible ANN structures to perform multi-step ahead forecasts. The second one, consists of an auto-
matic Time lag feature selection EANN (TEANN) approach that evolves not only ANN parameters (e.g.,
input and hidden nodes, training parameters) but also which set of time lags are fed into the forecasting
model. Several experiments were held, using a set of six time series, from different real-world domains.
Also, two error metrics (i.e., mean squared error and symmetric mean absolute percentage error) were
analyzed. The two EANN approaches were compared against a base EANN (with no ANN structure or
time lag optimization) and four other methods (autoregressive integrated moving average method, ran-
dom forest, echo state network and support vector machine). Overall, the proposed SEANN and TEANN
methods obtained the best forecasting results. Moreover, they favor simpler neural network models, thus
requiring less computational effort when compared with the base EANN.

© 2014 Elsevier B.V. All rights reserved.

Introduction

Nowadays, forecasting the future using past data is an impor-
tant tool to reduce uncertainty and support both individual and
organization decision making. For example, multi-step predictions
(e.g., issued several months in advance) are useful to aid tacti-
cal decisions, such as planning production resources. In particular,
the field of time series forecasting (TSF) deals with the predic-
tion of a given phenomenon (e.g., ice cream sales) based on the
past patterns of the same event. TSF has become increasingly used
in areas such as agriculture, finance, management, production or
sales.

Several Operational Research TSF methods have been pro-
posed, such as Holt-Winters (in the sixties) or the Autoregressive
Integrated Moving Average (ARIMA) methodology [30] (in the sev-
enties). More recently, several Soft Computing methods have been

∗ Corresponding author. Tel.: +351 253510313; fax: +351 25351031300.
E-mail addresses: jperalta@cvc.uab.es (J. Peralta Donate), pcortez@dsi.uminho.pt

(P. Cortez).

applied to TSF, such as Artificial neural networks (ANN) [13], evo-
lutionary computation (EC) [10] and fuzzy techniques [27] Also,
several hybrid systems that combine two or more soft computing
and/or forecasting techniques have been proposed for TSF, such as
proposed in [2,23,24,35].

This paper is focused on the use of ANN [20], which are a nat-
ural solution for TSF due to advantages such as flexibility (i.e., no
a priori knowledge is required), nonlinear learning and robustness
to noisy data. ANN were initially applied to TSF in 1987 [25] and
such research has been consistently growing since [13,33,44]. Some
examples of successful ANN forecasting applications are Internet
traffic [9], air pollution [34] and financial markets [24].

While several types of ANN have been proposed for TSF (e.g.,
radial-basis functions, recurrent networks), the majority of the
studies adopt the multilayer perceptron architecture [13,25,44]. In
particular, the time-lagged feedforward neural network (TLFN) is
a popular approach [9,20,33]. The TLFN adopts a multilayer per-
ceptron ANN as the learning base model and uses a sliding time
window method to create supervised training examples. The slid-
ing time window defines a set of time lags that are used as inputs
by the ANN.

http://dx.doi.org/10.1016/j.asoc.2014.06.041
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.06.041
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.06.041&domain=pdf
mailto:jperalta@cvc.uab.es
mailto:pcortez@dsi.uminho.pt
dx.doi.org/10.1016/j.asoc.2014.06.041

J. Peralta Donate, P. Cortez / Applied Soft Computing 23 (2014) 432–443 433

When adopting multilayer perceptrons for TSF (i.e., TLFN), a
crucial issue is the design of the best forecasting model, which
involves both feature and model selection [13,40]. The former is
required since a small set of time lags will provide insufficient infor-
mation to the ANN, while using a high number of time lags will
increase noise and probability of having irrelevant inputs. Indeed,
time lag selection is a core step of the ARIMA methodology, which
often selects the 1, 12 and 13 time lags for monthly seasonal and
trended series [30]. The latter selection is needed to get a good
generalization capacity, since a too complex ANN model will over-
fit the data, while a model that is too simple will present limited
learning capabilities. However, most ANN works for TSF adopt a
manual design for this feature and model selection that is ad hoc
(e.g., [9,12,22,25,33,44]), based either in domain knowledge or in
trial and error experimentation. An alternative is use Evolution-
ary Computation to search for the best ANN, in what is known
as Evolutionary ANNs (EANNs) [15,38,42]. Often, EANNs require
more computation when compared with manual ANN design, since
more ANNs are tested. Yet, EANNs are much more appealing to non
specialized users, given that few parameters need to be selected,
the search is fully automatic and more exhaustive, thus tending
to provide better performances when compared with the manual
design.

EANN systems have been treated mainly using three different
optimization points of view [6,42]: topology (e.g., number of hidden
layers, number of nodes in each layer); connection weights (e.g.,
values for each ANN connection); and learning rules (e.g., learning
factor). Within the TSF domain, the majority of EANN works make
use of rather rigid ANN structures that are fully connected, evolv-
ing only ANN hyperparameters, such as number of input and hidden
nodes [6,34]. For instance, once the number of inputs is set, all time
lags are adopted by the TLFN. Working with fully connected struc-
tures also means that ANNs can be more complex than needed. As a
consequence, these EANNs tend to require an heavy computational
effort. Moreover, most EANN works for TSF use the standard Genetic
Algorithm (GA) as the search engine, which requires setting several
parameters to (e.g., mutation rate, population size). The Estima-
tion Distribution Algorithm (EDA) is a more recent Evolutionary
Computation variant, proposed in 2001 [26], and that makes use
of exploitation and exploration properties to find good solutions.
When compared with other search methods (e.g., GA), EDA has the
advantage of requiring just one parameter (i.e., population size),
since crossover and mutation processes do not exist in EDA. Also,
EDA has a fast convergence and in recent previous work [35] it has
outperformed the standard GA and differential evolution methods
when selecting the best ANN TSF models.

In this paper, we propose two novel EANN variants for TSF
that are fully automatic and can be used by non specialized users
to perform multi-step ahead time series forecasts, since no a
priori knowledge is assumed from the analyzed time series. In
contrast with the majority of EANN works for TSF, the proposed
EANN variants make use of EDA as the search engine under
two design strategies: Sparsely connected EANN (SEANN) and
Time lag selection EANN (TEANN). Both strategies perform a
simultaneous feature and model selection for TSF, although with
a different emphasis. SEANN puts more effort in model selection
by explicitly defining if a connection exists and time lag deletion
only occurs when an input has no connections. TEANN enforces
feature selection, explicitly defining which time lags are used in
the chromosome, while ANN structure selection is made only in
terms of number of input and hidden nodes. These strategies are
addressed separately in order to measure the contribution of each
other when compared with the fully connected EDA EANN [35].
Moreover, we also compare all EANN methods with the popular
ARIMA methodology and three recently proposed machine learn-
ing methods: Random Forest (RF), Echo State Network (ESN) and

Fig. 1. Process to obtain training and validation sets.

Support Vector Machine (SVM). The experiments were performed
using several real-world time series from distinct domains and
the distinct forecasting approaches were compared under both
forecasting and computational performance measurements. The
paper is organized as follows. First, section “Evolutionary design
of artificial neural networks” described the EANN approaches.
Next, in section “Experimental setup and results” we present the
experimental setup and analyze the obtained results. Finally, we
conclude the paper in section “Conclusions”.

Evolutionary design of artificial neural networks

Time series and ANN

The problem of forecasting time series with ANN [35] is consid-
ered as obtaining the relationship from the value at period yt (in this
system the resulting ANN will have only one output neuron) and
the values from previous elements of the time series, using several
time lags {t − 1, t − 2, . . ., t − I}, to obtain a function:

ŷt = f (yt−1, yt−2, . . ., yt−I) (1)

where ŷt denotes the estimated forecast, as given by the ANN (f),
and I the number of ANN input nodes.

In order to obtain a single ANN to forecast time series values, an
initial step has to be done with the original values of the time series,
i.e., normalizing the data. The original values (yt) are normalized
into the range [0, 1] (leading to the Nt values). Once the ANN outputs
the resulting values, the inverse process is carried out, rescaling
them back to the original scale. Only one neuron was chosen at the
output layer and multi-step ahead forecasts are built by iteratively
using 1-ahead predictions as inputs [9]. Therefore, the time series
is transformed into a patterns set depending on the k inputs nodes
of a particular ANN, each pattern consisting of:

• I inputs values, that correspond to I normalized previous values:
Nt−1, Nt−2, . . ., Nt−I.

• One output value: Nt (the desired target).

This patterns set will be used to train and validate (i.e., com-
pute fitness value) each ANN generated during the evolutionary
execution. Thus, the patterns set is split into two subsets, using a
timely ordered holdout scheme with 70% of the elements for train-
ing and the most recent 30% elements for validation. We note that
the 70/30 split is very common (e.g., [22,27]) and in [12] this split
provided better TSF results for ANN when compared with other
divisions (e.g., 60/40 and 80/20). As an example, Fig. 1 shows how
such training and validation sets are created with I = 3. Finally, after
evolving the ANN, the best model is evaluated on a test set, which

Download English Version:

https://daneshyari.com/en/article/495424

Download Persian Version:

https://daneshyari.com/article/495424

Daneshyari.com

https://daneshyari.com/en/article/495424
https://daneshyari.com/article/495424
https://daneshyari.com

