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a  b  s  t  r  a  c  t

Most  industrial  processes  exhibit  inherent  nonlinear  characteristics.  Hence,  classical  control  strategies
which  use  linearized  models  are  not  effective  in  achieving  optimal  control.  In this  paper  an  Artificial
Neural  Network  (ANN)  based  reinforcement  learning  (RL) strategy  is proposed  for  controlling  a nonlinear
interacting  liquid  level  system.  This  ANN-RL  control  strategy  takes  advantage  of  the generalization,  noise
immunity  and  function  approximation  capabilities  of  the ANN  and  optimal  decision  making  capabilities
of  the  RL  approach.  Two  different  ANN-RL  approaches  for solving  a generic  nonlinear  control  problem
are  proposed  and their  performances  are evaluated  by applying  them  to  two benchmark  nonlinear  liquid
level  control  problems.  Comparison  of the  ANN-RL  approach  is  also  made  to  a  discretized  state  space
based  pure  RL  control  strategy.  Performance  comparison  on  the  benchmark  nonlinear  liquid  level  control
problems  indicate  that  the ANN-RL  approach  results  in  better  control  as  evidenced  by  less  oscillations,
disturbance  rejection  and overshoot.

©  2014  Elsevier  B.V.  All  rights  reserved.

Introduction

Control of liquid level in multiple interacting tanks by adjus-
ting flow rates is a paradigmatic nonlinear control problem that
is ubiquitous in many industrial processes. Conventional control
strategies like PID control that use approximate linear models do
not perform well while undergoing large changes in the operating
point. In this paper a machine learning [1–3] based approach that
uses a new reinforcement learning strategy to achieve state regula-
tion of a nonlinear system is proposed and applied to a benchmark
nonlinear liquid level control problem.

Historically reinforcement learning (RL) has been applied in
the fields of artificial intelligence and machine learning to solve
optimal sequential decision making problems arising in game play-
ing, scheduling and robotics [4–9]. Application of RL to enable
autonomous agents to learn to make optimal decisions in real time
is explored in [10–13]. Application of RL to a controller scheduling
problem is considered in [14]. Application of RL strategies to tune
ANN and fuzzy controllers is explored in [15–19]. Recently control
of industrial processes using RL strategies was proposed [20–24].
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Reinforcement learning algorithms solve the very general prob-
lem of optimal policy choice in a sequential decision making
process. Consider a controller that attempts to control the state
‘s’ of a plant by taking actions ‘a’ that depend on the state. When
the controller performs an action ‘a’ on the plant in state ‘s’, it
receives a reward R(s,a) that depends in general on both the action
and the state. As a result of the action ‘a’ taken by the controller
the controlled system transitions to the next state ‘s’ either prob-
abilistically according to some probability distribution Psa(s′) or
deterministically according to some state transition law: s′ = f(s,
a). The optimal policy �*(s) or action sequence is that which
maximizes the expected cumulative discounted reward given by
Eq. (1):

V�(s) = E[R(s0) + �R(s1) + �2R(s2)· · ·|s0 = s, �] (1)

The expected cumulative discounted reward starting at some
state s0 is denoted by V�(s) since it depends on that initial state and
also on the sequence of actions performed in each state �(s). The
constant � in Eq. (1) is chosen in the set [0,1) to favor policies that
provide immediate rewards. Also choice of � ensures convergence
of the infinite sequence in Eq. (1). This optimal policy choice prob-
lem is a Markov Decision Process (MDP) which is represented by a
5-tuple (S, A, Psa, � , R) where:

S – finite set of states (discretization necessary to deal with con-
tinuous state spaces),
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Nomenclature

s system state vector
a control action or input to the system
Psa(s′) state transition probabilities
R(s,a) reward for taking action ‘a’ in state ‘s’
�(s) policy function or action to be taken in state ‘s’
V�(s) cumulative discounted reward for following policy

� starting from state ‘s’
�* optimal policy function
V*(s) optimal value function
h [h1 h2 h3]T, state vector for the liquid level system
Q inlet flow rate for the liquid level system
� discount factor to discount future rewards and favor

immediate rewards
Ni number of discretization levels used for level vari-

able hi
Nf number of discretization levels used for inlet flow

rate Q

A – finite set of actions (discretization necessary to deal with con-
tinuous actions),
Psa – probability distribution of the next state given the current
state and action taken (includes deterministic transitions as a spe-
cial case),
� ∈ [0, 1) – discount factor to discount rewards obtained in the
future
R : S × A → R  – reward function.

The policy � is a function � : S → A that maps the current state
to the action to be taken by the controller. The optimal policy �* is
the policy that maximizes the total payoff:

� ∗ (s) = max
�

V�(s). V�(s) is the expected cumulative discounted

reward starting at some state s and following policy � and is known
as the value function. The optimal value function is the value func-
tion obtained when the optimal policy is executed. The optimal
value function satisfies Bellman equations:

V∗(s) = R(s) + max
a∈A

�
∑
s′∈S

Psa(s′)V∗(s′) (2)

The value iteration algorithm computes the optimal value func-
tion by iteratively using Eq. (2) starting with an estimate of all zeros.
Once the optimal value function is known the optimal policy can
be calculated from:

�∗(s) = argmax
a∈A

∑
s′∈S

Psa(s′)V∗(s′) (3)

The RL strategy given above works with finite state and action
spaces so to apply RL to the liquid level system we  discretize the
states and actions. Simulation results indicate that the approach
proposed in this paper that exploits the generalization ability of
artificial neural networks (ANNs) to minimize the effect of state
discretization results in less oscillations and overshoot of the liquid
level.

Problem formation

The implementation of reinforcement learning begins with the
definition of Markov Decision Process (MDP), which is a 5-tuple (H,
Q1, Phq, � , R) in the control problem considered.

Here, H = {[h1(m) h2(n)]T : m = 1 to N1 and n = 1 to N2}, where,
h1 and h2 are the liquid heights in tanks 1 and 2 respectively. The

continuous heights are discretized into N1 and N2 levels. Thus the
set of states H has size N1 × N2.

Q1 = {q1(n) : n = 1 to Nf} is the set of all possible inlet flow rates
to the first tank of the process. The inlet flow rate is taken as the
action executed by the controller. This action is discretized into Nf
levels.

Phq – In the liquid level system the state transitions are deter-
ministic so all probabilities except one are zero. A discretized
version of the state space model of the system provided in Eq. (4)
was used to find the next state h′ ∈ H based on the current action
q1 ∈ Q1 taken and the present state h ∈ H.

dh1

dt
= (q1 − r1

√
h1 − r3

√
h1 − h2)

A1

dh2

dt
= (q2 − r2

√
h2 + r3

√
h1 − h2)

A2

(4)

� ∈ [0, 1) – The discount factor used to give different weights to
short term and long term rewards. � was  taken to be 0.99 in this
paper.

R – Reward function, which rewards the controller for being in
a state.

Possible reward functions for the control problem are given in
Eqs. (5) and (6)

R(h) = −C
∥∥hdesired − h

∥∥ (5)

R(h) =
{

−1, if
∥∥hdesired − h

∥∥ ≥ ı

0, otherwise
(6)

where, h – present state; hdesired – desired state; C > 0 – a positive
real number.

The system starts in some state h(0) = [h1(0) h2(0)]T and the con-
troller takes some action, q1(0) ∈ Q1. This selected action takes the
system to a new state h(1) = [h1(1) h2(1)]T. From this state the con-
troller takes the next action q1(1) and this process continues with
successive action till the desired state is reached as given below.[

h1(0)

h2(0)

]
q1(0)−→

[
h1(1)

h2(1)

]
q1(1)−→

[
h1(2)

h2(2)

]
q1(2)−→· · · (7)

Upon visiting the sequence of states h(0), h(1), h(2),. . . with
actions q1(0), q1(1), q1(2),. . . our total payoff is given by

V(h) = R(h(0)) + �R(h(1)) + �2R(h(2)) + · · · (8)

The goal of RL is to choose actions over time so as to maximize
the value of payoff. The value function (V�(h)) defines the expected
sum of discounted rewards the controller will receive upon execut-
ing a fixed policy � starting from state h(0) till reaching the desired
state hdesired.

V�(h) = E[R(h(0)) + �R(h(1)) + �2R(h(2)) + · · ·|h(0) = h, �] (9)

This relationship can also be represented by a Bellman equation
as

V�(h) = R(h) + �V�(h′) (10)

Here, the first term defines the immediate reward for the con-
troller for being in this starting state. The second term represents
the sum of future discounted rewards. This Bellman equation
is used for finding the optimal value function for each of the
N1 × N2 states. The optimal value function, given below, is the value
achieved when the optimal policy is followed by the controller.

V∗(h) = max
�

V�(h) = R(h) + max
q1∈Q1

�V∗(h′) (11)
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