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a b s t r a c t 

The widely considered power constraints on optimizing power allocation in wireless networks, e.g., non- 

negative individual power and limited sum of all the individual power, imply the constraints where each 

individual power is not greater than the limited sum. However, the related implicit constraints are gen- 

erally regarded as redundant for algorithm design in most current studies. In this paper, we explore the 

question “Are the implicit constraints really redundant?” in the optimization of power allocation espe- 

cially when using iterative methods (e.g., subgradient method) that have slow convergence speeds. Using 

the water-filling problem as an illustration, we first derive the structural properties of the optimal so- 

lutions based on Karush–Kuhn–Tucker conditions. Then we propose a non-iterative closed-form optimal 

method and use iterative methods (i.e., bisection method and subgradient method) to solve the prob- 

lem. Our theoretical analysis shows that the implicit constraints are not redundant, and particularly, their 

consideration can effectively speed up the convergence of the subgradient method and reduce its sensi- 

tivity to the chosen step size. Numerical results for the water-filling problem and another existing power 

allocation problem demonstrate the effectiveness of considering the implicit constraints. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Future wireless communication networks are required to sup- 

port a large number of users with various requirements, especially 

with the growing demands of multimedia services [1–9] . To fulfill 

the requirements, radio resource management (RRM) plays an es- 

sential role as the system level control of co-channel interference 

and other radio transmission characteristics in wireless commu- 

nication systems [10] . RRM involves strategies and algorithms for 

controlling parameters such as transmit power, user association, 

beamforming, data rate, handover criteria, modulation scheme and 

error coding scheme, etc., aiming at maximizing the utilization of 

the limited radio-frequency spectrum resources and radio network 

infrastructure [11] . Among these RRM techniques, power alloca- 

tion optimization is a most important aspect of wireless commu- 

nication system design and has been well studied in the past few 

decades. 
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On one hand, to solve various formulated power allocation 

problems or other optimization problems in wireless systems, the 

subgradient method is an iterative first-order method that has 

been widely used in many studies such as [12–26] and references 

therein. In [12,13] , the subgradient method was used to solve the 

problem of maximizing the throughput under the constraints of 

interference power and individual transmit power in cognitive 

radio networks. In [14] , subgradient methods were utilized based 

on dual decomposition to solve the simultaneous routing and 

resource allocation problem. In [15] , a subgradient solution was 

developed to compute the maximum rate and the optimal routing 

strategy to solve the maximum multicast rate problem in the 

general undirected network model. In [16] , a distributed subgradi- 

ent method was used to solve the problem about how to choose 

opportunistic routes for users to optimize the total utility or profit 

of multiple simultaneous users in wireless mesh networks. In [17] , 

distributed subgradient methods were applied to optimize global 

performance in delay tolerant networks with limited information. 

In [18] , a subgradient solution was proposed to solve the problem 

of jointly optimizing channel pairing, channel-user assignment and 

power allocation in a single-relay multiple-access system. In [19] , 

an α-approximation dual subgradient algorithm was proposed to 

optimize the total utility of multiple users in a load-constrained 

multihop wireless network. Based on the subgradient method, 
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the study in [20] proposed a distributed optimal data gathering 

cost minimization framework with concurrent data uploading in 

wireless sensor networks. With the dual subgradient method, the 

study in [21] focused on convergence analysis of decentralized 

min-cost subgraph algorithms for multicasting in coded networks. 

In [22] , the subgradient method was used to solve the joint power 

and bandwidth allocation problem in an improved amplify and 

forward cooperative communication scheme. In our previous work 

[23–26] , the subgradient method was also used to design resource 

allocation or scheduling schemes with different optimization 

objectives under the network constraints in small cell systems. 

Though subgradient methods can be operated in a distributed 

manner, they usually have slow convergence rates and are very 

sensitive to the chosen iteration step sizes [27,28] , which need to 

be improved to reduce the computation costs and even signaling 

overhead in wireless networks and to reduce the sensitivity to 

the chosen step sizes since (1) improper step sizes may not make 

the subgradient methods converge and (2) proper step sizes are 

not easy to choose especially when the formulated optimization 

problems are very complex. 

On the other hand, mathematically, the formulated optimiza- 

tion problems of power allocation in wireless systems are gen- 

erally subject to at least two inequality constraints [10,12–24] on 

p n , the transmit power allocated at a base station (BS) for the 

n th user, e.g., (1) nonnegative: p n ≥ 0, ∀ n , and (2) limited sum: ∑ N 
n =1 p n ≤ P max , where N and P max respectively denote the total 

number of users served by the BS and the BS’s maximum transmit 

power. These two power constraints imply another set of (implicit) 

constraints, i.e., p n ≤ P max , ∀ n . However, in most currently studied 

power allocation optimization problems or other similar optimiza- 

tion problems with the above two inequality constraints, the im- 

plicit constraints are regarded as redundant and useless in the de- 

sign of strategies and algorithms for solving the problems. From 

the perspective of mathematics, the implicit constraints obviously 

hold, but are they really redundant in optimization algorithms? To 

the best of our knowledge, this question is unexplored. 

The above motivates us to answer the question “Are the 

implicit constraints really redundant?” in power allocation op- 

timization especially when using subgradient methods in the 

solution algorithms. Specifically, we study the water-filling prob- 

lem as a typical illustration of power allocation optimization. 

Based on Karush–Kuhn–Tucker (KKT) conditions, we derive the 

structural properties of the optimal solutions to the water-filling 

problem and evaluate the performance of the proposed methods 

with/without the consideration of the implicit constraints. As the 

extension of our previous work [29] , our contributions of this 

paper are summarized below: 

• This paper is the first to explore the question “Are the implicit 

constraints really redundant?” in power allocation optimization 

especially when using subgradient methods. 

• By illustrating the water-filling problem typical in resource allo- 

cation, our theoretical analysis shows that considering the im- 

plicit constraints can effectively speed up the convergence of 

the subgradient methods, reduce the sensitivity to the chosen 

step size and lead to convergence even when an improper step 

size is used, while the opposite is true if the implicit constraints 

are not considered. This finding can be extended to other opti- 

mization problems and applied to other iterative methods. Be- 

sides, we propose a non-iterative closed-form optimal method 

and iterative bisection methods. 

• Numerical results on the water-filling problem and the power 

allocation problem for multiuser systems in [30] show that con- 

sidering the implicit constraints in the algorithm design can 

effectively im prove the performance of the used subgradient 

methods. 

The rest of this paper is organized as follows. In Section 2 , we 

formulate the water-filling problem as an illustration of power al- 

location. In Section 3 , we derive the structural properties of the 

optimal solutions. In Section 4 , algorithms for solving the op- 

timization problem are proposed and analyzed. All the possi- 

ble cases are theoretically analyzed with some well-designed ex- 

amples in Section 5 . Experiment results are shown to evaluate 

the performance of the proposed algorithms in Section 6 . Finally, 

Section 7 gives the conclusions. 

2. The water-filling problem typical in resource allocation 

In this section, we provide a general form of resource allocation 

problems and illustrate a typical resource allocation problem, i.e., 

water-filling problem, to explore whether the implicit constraints 

are really redundant for algorithm design. 

2.1. General resource allocation problem 

Many existing power allocation or other resource allocation op- 

timization problems can be formulated or transformed in a general 

form as 

max 
p , y 

f ( p , y ) (1a) 

s.t. p n ≥ 0 , ∀ n ∈ N , (1b) 

N ∑ 

n =1 

p n ≤ P max , (1c) 

g i ( p,y ) ≤ 0 , ∀ i ∈ I, (1d) 

y ∈ S Y , (1e) 

where N is a given number (e.g., number of users), N = { 1 , 2 , 
. . . , N} , I and S Y are two given sets about resource constraints; p = 

[ p 1 , p 2 , . . . , p N ] 
T 

and y , respectively, are variable vectors of power 

and other resource allocations; f ( p , y ) and g i ( p, y ) are, respec- 

tively, the given objective function (e.g., sum data rate) and con- 

straint functions w.r.t. p and y ; P max is a positive constant scalar 

(e.g., maximum transmit power). 

From (1b) and (1c) , we can get the implicit constraints as 

p n ≤ P max , ∀ n ∈ N . (2) 

Remark 1. In existing studies, the same or similar implicit 

constraints in (2) are usually overlooked and are regarded as 

redundant. 

Whether the problems in (1) are convex or nonconvex, they 

can be solved with a family of iterative methods (e.g., subgradient 

methods) to get the optimal or suboptimal solutions. 

2.2. Water-filling problem 

To explore whether the implicit constraints are redundant, we 

illustrate a most typical resource allocation optimization problem, 

i.e., the water-filling problem, which is to maximize the sum of the 

capacity of users under transmit power constraints [31] and can be 

formulated as 

max 
p 

N ∑ 

n =1 

log 2 (1 + αn p n ) (3a) 

s.t. p n ≥ 0 , ∀ n ∈ N , (3b) 

N ∑ 

n =1 

p n ≤ P max , (3c) 
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