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a b s t r a c t 

Cooperative spectrum sensing (CSS) in homogeneous cognitive radio networks conducts cooperation 

among sensing users to jointly sense the information of spectrum usage for recovery of spectrum sta- 

tus and utilization of available ones. Motivated by the fact that the number of occupied channels is 

sparse, the mechanism of greedy multiple measurement vectors (MMVs) in the context of compres- 

sive/compressed sensing can ideally model the wideband CSS scenario to efficiently solve the support 

detection problem for identification of occupied channels. Actually, the number of sparsity is unknown, 

and the existing greedy algorithms for MMVs lack for a robust stopping criterion of determining when 

the greedy algorithm should terminate. In this paper, we analyze and derive oracle stopping bounds that 

are independent of prior information such as sparsity for greedy algorithms. Simulations are provided 

to confirm that, in compressive cooperative spectrum sensing, the proposed stopping criteria for greedy 

algorithms can remarkably improve detection performance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Background 

Cognitive radio [1] is one of solutions to efficiently solve sparse 

spectrum usage [2] in wireless communications in that Secondary 

Users (SUs) are allowed to sufficiently exploit available spectrums, 

which are not currently used by Primary Users (PUs), via spectrum 

sensing (SS) techniques. Most existing methods, based on Nyquist 

sampling for the purpose of exact recovery of the original sig- 

nal, require large sampling rates under wideband spectrum sensing 

scenarios [3] . 

With an eye on the fact [2] that only few spectra will be used, 

i.e. , only few PUs are active, such characteristic of sparsity meets 

the assumption of compressed sensing (CS) [4–6] , which is a revo- 

lutionary sampling theory that has received considerable attention 

recently in achieving the sub-Nyquist rate sampling. 

Moreover, in wireless communications, the transmitted signals 

easily suffer from fading and noise interference. Fortunately, with 

cooperative spectrum sensing (CSS), all cooperative SUs can jointly 

sense the spectrums to better detect the status of spectrum us- 

age [7–9] from the sensed signals. Since the SUs in CSS share the 
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same sparsity pattern for spectrum detection, joint sparsity model 

(JSM) [10] is suitable to model CSS. 

In the literature, there exist some solutions to JSM. In this pa- 

per, we particularly focus on the solver, called Multiple Measure- 

ment Vectors (MMVs) [11,12] , which are composed of more than one 

measurement vector in the context of compressed sensing. MMVs 

accommodate the scenario of CCS in that more than one SUs are 

deployed. Moreover, CSS mainly cares about whether a channel is 

used or not, leading to the support detection problem. In other 

words, the number of active PUs in CSS corresponds to that of sup- 

ports in CS. 

In the context of compressive sensing, the sparse signal re- 

covery or support detection from (far) fewer measurements can 

be achieved in two ways: matching pursuit (MP) and con- 

vex optimization ( e.g. , � 1 -optimization). In the CSS literature, � 1 - 

optimization is employed in [7,8] , incurring high complexity to de- 

lay and void the detection results. In contrast with � 1 -optimization, 

orthogonal matching pursuit (OMP) [13] is considered as a good 

solver due to its efficiency and computation simplicity. Although 

OMP is efficient, its recovery performance will be degraded due to 

the effect of fading and noise interference. 

A crucial step in OMP is the stopping criterion that will affect 

its recovery performance. One popular stopping criterion for OMP 

is set to be the sparsity K of a signal in that if K supports are de- 

tected, then OMP stops its greedy iterations. The sparsity of a sig- 

nal, however, is usually unknown in advance. This is also the case 
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in CSS. As far as we know, the study of stopping criteria for OMP 

under the scenario of MMVs with unknown sparsity is still rela- 

tively unexplored in the literature. 

As for MMV solvers, SOMP (Simultaneous Orthogonal Matching 

Pursuit) [ [14] is considered to be a basic algorithm extended from 

OMP to MMVs. In [15] , an advanced greedy algorithm, called Rank- 

Awareness Order Recursive Matching Pursuit (RA-ORMP), is pro- 

posed to deal with sparse signal recovery from MMVs, but without 

taking noisy measurements into account. In [9] , Distributed OMP 

(DOMP) is presented to process measurement vectors in a dis- 

tributed manner. Moreover, [16] proposes five thresholding-based 

algorithms for joint sparse recovery; however, most of thresholds 

are designed to be related to sparsity K , which is, however, un- 

known in advance. 

1.2. Related work 

CSS is a key technique to achieve better performance of spec- 

trum sensing when channel fading or shadowing occurs. According 

to the sensing range of spectrum, spectrum sensing can be divided 

into two categories: narrowband sensing and wideband sensing. 

In narrowband CSS, [17] introduces machine learning techniques, 

including supervised and unsupervised learning, to model active 

PUs among channels while [18] conducts energy detection under 

Nyquist sampling rate to judge if a PU is active with the detection 

results being generated for further machine learning analysis. Al- 

though CSS using machine learning in [17] can provide reliable re- 

sults, it takes much time cost for SUs to build a classifier. Evidently, 

this is not an efficient process for wideband spectrum sensing. In 

[19] . the authors introduce a mechanism to decide sensing nodes 

and optimal energy detection threshold for cooperative spectrum 

sensing with energy saving. In addition to energy detection, tradi- 

tional narrowband sensing also includes matched filtering detec- 

tion [20] and cyclostationary feature detection [20] , which was ap- 

plied on CSS [21] . 

For the purpose of providing efficient spectrum sensing, wide- 

band spectrum sensing is a more powerful solution than narrow- 

band sensing. Generally, wideband sensing can be divided into two 

categories: Nyquist sensing and sub-Nyquist sensing [22] . As for 

Nyquist wideband sensing, [23] proposes a multiband joint de- 

tection algorithm by using standard analog-to-digital converter; 

[24] makes use of wavelets to design a spectrum sensing algo- 

rithm; and a filter bank spectrum sensing algorithm is proposed 

in [25] . Since wideband sensing covers a very large range, a higher 

sampling rate will incur higher computational overhead. For this, 

sub-Nyquist sensing is an alternative to considerably reduce sam- 

pling cost. 

To solve the critical problem of sub-Nyquist sensing, the core of 

compressive sensing, beyond Nyquist sampling rate, has received 

much attention for spectrum sensing [7,8,26] . 

Tian and Giannakis [27] first used CS in wideband spectrum 

sensing. They further enhance the robustness against noises in 

[28] . However, their method requires that the sparsity level should 

be known in advance. In [29] , Wang et al . provided a two-step 

compressive spectrum sensing (TS-CSS) algorithm that can be 

solved at low sampling cost. TS-CSS changes the sampling rates 

based on sparsity level of spectrum adaptively. However, TS-CSS 

needs the sparsity level estimation, leading to extra computational 

overheads. Sun et al . [30] proposed an algorithm that can avoid 

sparsity level estimation and adjust the sampling rate adaptively 

at the expense of needing an iterative process with higher compu- 

tational complexity. In [31] , Qin et al . utilized geolocation database 

to estimate the sparsity level as prior information for signal recov- 

ery. Moreover, by observing the fact that sparsity implies low-rank, 

Qin et al . exploited low-rank completion to present a two-phase 

algorithm in [32] . Different from the above works, we explore the 

energy of noises to avoid sparsity level estimation in our method. 

On the other hand, several methods [33–36] have been pro- 

posed to solve the CSS problem based on CS but focusing on 

the issues different from the ones in the aforementioned meth- 

ods. Specifically, in order to decrease complexity at each sensing 

node in wideband cooperative CSS, a so-called Distributed Sens- 

ing Matrix (DSM) algorithm based on CS was developed by Far- 

rag et al [33] . To further lower computational overheads and en- 

hance reconstruction accuracy on wideband detection, Zhao et al . 

made use of CS with sequential detection to construct an inte- 

grated framework in [34] . In addition, the cooperative spectrum 

sensing schemes presented in [35,36] can simultaneously guaran- 

tee the performance and reduce the energy consumption in signal 

acquistion, processing, and transmission based on exploiting the 

co-sparsity among SUs. 

1.3. Contributions 

In this paper, we aim to study a practical subspace MMVs al- 

gorithm for CSS by presenting robust stopping criteria. Since noise 

interference will unavoidably make some supports un-detected, we 

mainly aim to detect those significant ones without necessarily re- 

covering all. Specifically, we derive theoretical bounds as the stop- 

ping rules in a noisy MMVs environment to deal with noisy mea- 

surements. The derived bounds are simply constrained by the noise 

variance and measurement matrix’s dimensionality, and are veri- 

fied to be effective via simulations and comparisons. 

In addition to stopping criteria, it is crucial in both theoreti- 

cal and practical aspects to explore the upper bound of number of 

measurements used in compressive sensing and the upper bound 

of distance between a pair of primary user and secondary user 

in the scenario of spectrum sensing. As for measurements, a large 

amount of measurements will be beneficial to signal recovery but 

will incur communication overhead and waste of sensing energy. 

Hence, the use of proper amount of measurements is of paramount 

importance in the framework of compressive sensing-based coop- 

erative spectrum sensing. As for the distance between a pair of 

primary user and secondary user, if second users are not properly 

deployed, the sensing signals will be weakened to affect the de- 

tection capability. The aforementioned two issues will be seriously 

treated in the paper. 

Finally, our proposed stopping criteria are readily incorporated 

into the existing subspace-based MMVs algorithm to improve their 

support detection performance. In the literature, subspace-based 

algorithms [37,38] have been applied to MMVs. Especially, [37] im- 

proves [38] to maintain detection quality with less measurement 

vectors when noise interference exists. In [39] , we have modified 

[37] to adapt to our stopping criteria without needing to use the 

prior knowledge regarding sparsity. However, in this paper, the 

theoretical analyses are entirely explored. The derived stopping cri- 

teria, in fact, are able to overcome the realistic problem of un- 

known sparsity while maintaining good support detection rate. It 

also deserves to note that our stopping criteria can be adaptive 

to the existing greedy algorithms in CS in order to achieve robust 

sparse signal recovery or support detection. 

We apply some state-of-the-art subspace-based MMVs 

equipped with our derived stopping criteria and upper bound 

of measurements to cooperative spectrum sensing in homo- 

geneous cognitive radio networks. Simulation results are also 

provided to validate the feasibility of our method. 

1.3.1. Comparison with our previous works [40] and [41] 

For [40] and [41] , we mainly address the problem of com- 

pressed sensing with multiple measurement vectors (MMVs) asso- 

ciated without and with prior information, respectively, in order to 
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