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Elmer  César  Trejo  Zúñiga ∗,  Irineo  Lorenzo  López  Cruz,  Agustín  Ruíz  García
Agricultural Engineering Department, University of Chapingo, Km. 38.5 Carr. México-Texcoco, Chapingo, Estado de México C.P. 56230, Mexico

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 28 June 2013
Received in revised form 21 May  2014
Accepted 18 June 2014
Available online 26 June 2014

Keywords:
Parameter estimation
Evolutionary algorithms
Bio-inspired algorithms
SUCROS model

a  b  s  t  r  a  c  t

All dynamic  crop  models  for  growth  and  development  have  several  parameters  whose  values  are  usually
determined  by  using  measurements  coming  from  the real  system.  The  parameter  estimation  problem  is
raised  as an  optimization  problem  and  optimization  algorithms  are  used  to solve it.  However,  because
the  model  generally  is  nonlinear  the  optimization  problem  likely  is  multimodal  and  therefore  classical
local  search  methods  fail in locating  the global  minimum  and  as a consequence  the  model  parameters
could  be  inaccurate  estimated.  This  paper  presents  a  comparison  of  several  evolutionary  (EAs)  and  bio-
inspired  (BIAs)  algorithms,  considered  as  global  optimization  methods,  such  as Differential  Evolution
(DE),  Covariance  Matrix  Adaptation  Evolution  Strategy  (CMA-ES),  Particle  Swarm  Optimization  (PSO)
and Artificial  Bee  Colony  (ABC)  on parameter  estimation  of  crop  growth  SUCROS  (a  Simple  and  Universal
CROp  Growth  Simulator)  model.  Subsequently,  the SUCROS  model  for potential  growth  was  applied  to  a
husk  tomato  crop (Physalis  ixocarpa  Brot.  ex Horm.)  using  data  coming  from  an  experiment  carried  out
in  Chapingo,  Mexico.  The  objective  was  to determine  which  algorithm  generates  parameter  values  that
give the  best  prediction  of  the  model.  An analysis  of  variance  (ANOVA)  was  carried  out  to statistically
evaluate  the efficiency  and  effectiveness  of  the  studied  algorithms.  Algorithm’s  efficiency  was evaluated
by  counting  the  number  of  times  the  objective  function  was  required  to  approximate  an  optimum.  On
the  other  hand,  the  effectiveness  was  evaluated  by counting  the  number  of  times  that  the  algorithm
converged  to  an  optimum.  Simulation  results  showed  that  standard  DE/rand/1/bin  got  the  best  result.

© 2014  Elsevier  B.V.  All  rights  reserved.

Introduction

Mathematical models in agriculture are powerful tools to
describe and understand complex systems. These models have
been used in plant breeding to simulate the effects of changes in the
morphological and physiological characteristics of crops which aid
in identification of ideotypes for different environments. The struc-
ture of dynamic crop growth models consist in a set of ordinary first
order differential equations characterized by non-linearity, multi-
variate dynamic, complexity and uncertainty [1]. Generally, these
equations have a set of coefficients that represent physiological
parameters whose values have to be determined with precision
to obtain a good fit between predicted variables and measure-
ments. In the development process of a mathematical crop growth
model, parameter estimation or model calibration is essential in
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order to get the objective aforementioned. Which implies, by apply-
ing optimization algorithms, to estimate parameters values from
measurements that affect more model behavior. The process to
determine parameter values can be established as an optimiza-
tion problem which allowing that a variety of algorithms can be
used to look for a solution. Generally, local methods such as LSE
(Least Squares Estimation) and SQP (Sequential Quadratic Program-
ming) are used. However, those algorithms have the drawback
of leading to inaccurate estimated parameter values (high vari-
ance of parameters estimators) and inaccurate model predictions
(over parameterization) when they are applied in the estimation
of a large number of model parameters (i.e. > 10). This problem
is because such algorithms often fail to converge to the optimum
value when the parameters are too numerous [2]. Also, due to high
non-linearity of models of crop growth and a dependency between
the parameters (epistasis), the optimization problem can be non-
convex or multi-modal.

In order to solve multi-modal optimization problems, global
optimization methods such as evolutionary algorithms (DE, Dif-
ferential Evolution and CMA-ES, Covariance Matrix Adaptation
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Evolution Strategy) and algorithms inspired by the behavior of
biological systems (PSO, Particle Swarm Optimization and ABC,
Artificial Bee Colony) can provide good approximations to the
global optimal value [3–8,21–24].

In the literature many works devoted to parameter estimation
have been focused on greenhouse crop growth models, mainly
using evolutionary algorithms (e.g. [9–12]). However, few works
have been done to parameter estimation of the crop growth mod-
els in open field. Ioslovich and Gutman [13] and Wallach et al. [14]
proposed a procedure for parameter estimation of crop models cal-
ibrated with field data, but they did not use global optimization
methods. Pabico et al. [15] formulated a Genetic Algorithm (GA) to
calculate the cultivar coefficients of crop models. However, nowa-
days limitations of genetic algorithms as optimizers are well known
[16]. To our best knowledge no one, so far has applied bio-inspired
optimization algorithms to parameter estimation of crop models
in open field. Therefore, the objective of the present research was
to evaluate the performance through efficiency and effectiveness of
the DE, CMA-ES, PSO and ABC algorithms, to estimate 25 parameters
of the SUCROS (a Simple and Universal CROp Growth Simulator)
model [17] applied to a husk tomato crop, in order to analyze which
algorithm generates parameter values that give the best prediction
of the model not only to increase the knowledge of the husk toma-
toes cropping system but also the potential developing of practical
applications. Efficiency or computational cost of an algorithm is the
number of times the objective function is evaluated to find an opti-
mum.  The effectiveness or performance of an algorithm, to achieve
an optimum in a multi-modal optimization problem, is calculated
by counting the number of times the algorithm converges to the
same optimum with different initial values for the iterative process
[18].

Materials and methods

The SUCROS model for potential crop growth

The SUCROS (a Simple and Universal CROp Growth Simulator)
is a mechanistic model that explains crop growth on the basis of
the underlying processes, such as carbon dioxide (CO2) assimilation
and respiration, as influenced by environmental conditions [19].
It simulates potential growth of a crop, i.e. its dry matter accu-
mulation under ample supply of water and nutrients, in a pest,
disease and weed-free environment under the prevailing weather
conditions. The potential crop growth model has been described
extensively elsewhere [19,17] and a brief summary to emphasize

its main properties is given in Tables 1 and 2. The seven ordinary
differential equations that make up the model are:

dxds

dt
= f (xds,T ) (1)

dxlai

dt
=  Growthlai − Deathlai (2)

dxgldw

dt
= Growthgldw − Deathgldw (3)

dxdldw

dt
= Deathdldw (4)

dxrdw

dt
= (1 − frsh(xds))TotalGrowth (5)

dxstdw

dt
= frst(xds)frsh(xds)TotalGrowth (6)

dxsodw

dt
= frso(xds)frsh(xds)TotalGrowth (7)

where xds (dimensionless) represents the development state, xlai
(m2m−2) is the leaf area index, xgldw (g m−2) is the green leaves
biomass, xdldw (g m−2) is the biomass of death leaves, xrdw (g m−2)
is the biomass of roots, xstdw (g m−2) is the biomass of stems and
xsodw (g m−2) is the biomass of fruits. Main equations of the model
structure are shown on Table 1. The total set of SUCROS parameters
are described on Table 2. On the other hand, on Table 1 �t  (d, day)
is the integration step size, Tmax (◦C) is the maximum daily tem-
perature, and Tmin (◦C) is the minimum daily temperatures which
are the inputs variables for the SUCROS model. Empirical functions
in the SUCROS model are the following: f(xds,T) which calculates
the development stage rate depending on temperature, frsh(xds) the
fraction total dry matter allocated to shoots, frst(xds) the fraction of
shoot dry matter allocated to stems, frso(xds) the fraction of shoot
dry matter allocated to storage organs, frleaves(xds) the fraction of
shoot dry matter allocated to leaves. All these functions depend on
stage of development. Other empirical functions are: f(xst, xds, Tavg),
f1(xds), f2(xlai) and f(demerg) is a switching function which output is
one as the simulation time is equal to the emergence day, otherwise
its output is zero.

Experimental site description

A husk tomato crop (Physalis ixocarpa Brot. ex Horm.) was
grown during the summer of 2007 in Chapingo, Mexico (19◦16′52′′

LN and 99◦39′0′′ LW). The site has a temperate weather with a rain-
ing season during the summer and a drought time during winter.
The annual average temperature is 15.5◦C and the annual rainfall

Table 1
Main equations of SUCROS model for potential crop growth.

Function Description Units

Grwthlai = SLA · Growthgldw LAI growth rate during linear phase m2m−2d−1

Grwthlai = xlai · exp(RGRL · Teff · �t)−1

�t
LAI growth rate for exponential phase m2m−2d−1

Grwthgldw = frleaves(xds) · frsh(xds) · TotalGrowth Growth rate for leaves g m−2d−1

TotalGrowth = Assim−Rm+CONVL · wtl · CFST(30/12)
ASRQ Growth rate for total plant biomass g m−2d−1

Assim = (30/44)AMX  · exp(− EFF · PARabs/AMX) Assimilation rate of CO2 g m−2d−1

Rm = (MAINLV · xgldw + MAINST · xstdw + MAINRT · xrdw + MAINSO · xsodw) · fresp(T) · fresp(xds) · f(demerg) Maintenance respiration rate g m−2d−1

fresp(T) = Q10
Tavg −TREF

10 Temperature effect on respiration rate –
fresp(xds) = xgldw

xgldw+xdldw
Effect of development state on respiration rate –

Deathgldw = xgldw · Deathlai
xlai

Leaves mortality rate g m−2d−1

Deathlai = xlaimax(f1(xds), f2(xlai)) Rate mortality of leaf area m2m−2d−1

wtl = FRTRL · xst · f (xst , xds, Tavg ) Translocation rate of biomass from stems to
storage organs

g m−2d−1

PARabs = 1 − exp(− KDF · xlai) Function of light interception J m−2s−1

Teff = max(0, 1
2 (Tmax + Tmin) − TBASE) Daily effective temperature ◦C
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