
Computer Communications 103 (2017) 116–129 

Contents lists available at ScienceDirect 

Computer Communications 

journal homepage: www.elsevier.com/locate/comcom 

Utilizing 2-D leaf-pushing for packet classification 

Jungwon Lee, Hayoung Byun, Ju Hyoung Mun, Hyesook Lim 

∗

Department of Electronics Engineering, Ewha Womans University, Seoul 03760, Republic of Korea 

a r t i c l e i n f o 

Article history: 

Received 9 December 2015 

Revised 26 January 2017 

Accepted 11 February 2017 

Available online 14 February 2017 

Keywords: 

Internet 

Router 

Packet classification 

Trie 

Area-based quad-trie 

Leaf pushing 

Bloom filter 

Decision tree 

a b s t r a c t 

Packet classification is one of the most challenging functionalities performed by routers at wire-speed for 

every incoming packet. For search spaces composed of multiple rules represented geometrically, various 

space decomposition algorithms have been studied to provide effective search methods. While an area- 

based quad-trie (AQT) provides a simple and intuitive way of mapping the geometrical search space into 

a two-dimensional (2-D) trie structure, it does not provide high-speed classification performance because 

the mapping is incomplete. This paper proposes the application of leaf-pushing into the 2-D trie to im- 

prove the classification performance of the AQT. The leaf-pushing AQT provides a more effective method 

of searching rules covering each input packet in the decomposed space. We also discuss an efficient im- 

plementation technique for our algorithm using a Bloom filter and a hash table. Simulation results show 

that our proposed leaf-pushing AQT improves the packet classification performance up to 37 times for 

sets with up to 10 0,0 0 0 rules compared with the AQT. To be compared with other space decomposition 

algorithms, a refined structure of the leaf-pushing AQT is also proposed. Simulation results show that 

the proposed refined structure provides an effective space decomposition method as well as the balance 

between memory requirements and classification speed, while most of other space decomposition algo- 

rithms show a trade-off between them. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

As the Internet has grown, various applications have been de- 

veloped, and the amount of traffic carried by the Internet has 

increased rapidly in recent years. The Internet needs to provide 

different priorities or quality of services (QoS) to different appli- 

cations, users, or data flows. Packet classification is an essential 

pre-requisite for Internet routers to provide such services [1–5] . 

Packet classification determines a set of rules that match each in- 

put packet using five header fields: a source prefix, a destination 

prefix, a source port number, a destination port number, and a pro- 

tocol type. The highest priority rule among the matching rules be- 

comes the best matching rule (BMR) for the packet. The Internet 

routers treat the packet as specified in the class of the BMR. 

Using a ternary content addressable memory (TCAM) is the de 

facto standard in implementing the packet classification function- 

ality [6] . However, the TCAM suffers from memory blowup when 

representing range fields in rules [6 , 7] , and thus the number of 

range fields should be limited. Studies have been performed on ef- 

ficient range representation for TCAM and a method to save TCAM 

area while providing the same performance [8–10] . However, the 

∗ Corresponding author. 

E-mail address: hlim@ewha.ac.kr (H. Lim). 

power dissipation problem of the TCAM severely limits its use in 

practice. Studies to replace TCAMs with ordinary memories using 

algorithmic approaches have been widely performed [11–38] . 

Various space decomposition algorithms have been studied 

such as the area-based quad-trie (AQT) [11] , hierarchical intel- 

ligent cutting (HiCuts) [12] , multi-dimensional cutting (Hyper- 

Cuts) [13] , range splitting (HyperSplit) [14] , discrete bit selection 

(DBS), [15] effective cutting (EffiCuts) [16] , ruleset splitting de- 

pending on characteristics (smartSplit) [17] , and boundary cutting 

(BC) [18] . Each of these algorithms uses the geometric representa- 

tion of rules and attempts to provide an effective search method 

for the geometrically represented space. They recursively decom- 

pose the space and determine the rules covering an input packet, 

which is represented as a point in the search space. Hence, the 

packet classification problem can be thought of as a point location 

problem in a geometrically represented search space. 

Among the space decomposition algorithms, while the area- 

based quad-trie (AQT) provides a simple and intuitive search 

method using a 2-D trie structure, it has a number of issues. For 

two prefix fields used in constructing the AQT, the prefix informa- 

tion is only utilized up to the length of a shorter-length prefix. 

In other words, the prefix information in the longer-length prefix 

longer than the shorter-length prefix is not utilized in constructing 

the 2-D trie. As a result, each search path has a multiple number 

http://dx.doi.org/10.1016/j.comcom.2017.02.005 

0140-3664/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.comcom.2017.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.02.005&domain=pdf
mailto:hlim@ewha.ac.kr
http://dx.doi.org/10.1016/j.comcom.2017.02.005


J. Lee et al. / Computer Communications 103 (2017) 116–129 117 

Table 1 

Example set of rules. 

Rule no Source Destination Source Destination Protocol 

prefix prefix port port type 

R 0 010 ∗ 011 ∗ 0, 65535 1704, 1704 6 

R 1 01100 ∗ 0110 ∗ 161, 161 1711, 1711 6 

R 2 0110 ∗ 1001 ∗ 1024, 1024 1521, 1521 6 

R 3 1010 ∗ 1101 ∗ 119, 119 1717, 1717 6 

R 4 1 ∗ 10 ∗ 53 ,53 2110, 2110 6 

R 5 00 ∗ 0 ∗ 1024, 1024 1717, 1717 6 

R 6 
∗ 110 ∗ 80, 80 1221, 1221 6 

R 7 0 0 0 ∗ ∗ 0, 65535 0, 65535 6 

R 8 001 ∗ 00 ∗ 0, 65535 0, 65535 ∗

R 9 00 ∗ 111 ∗ 0, 65535 0, 65535 ∗

of rule nodes and each input packet must be compared with an 

excessive number of rules. 

The contribution of this paper is as follows. We propose the ap- 

plication of leaf-pushing [39] to the AQT in order to better map 

the geometrical search space into a 2-D trie. In our proposed leaf- 

pushing AQT, the number of rule nodes encountered in each search 

path is limited as a single leaf node and the number of rules com- 

pared with each input packet is limited to the number of rules 

stored in the leaf node. We also discuss an interesting character- 

istic of the leaf-pushing AQT, and describe an efficient method of 

utilizing the characteristic using a Bloom filter and a hash table. A 

refined structure of the leaf-pushing AQT which provides the con- 

trollability in classification speed is also proposed. 

The remainder of the paper is organized as follows. In Section 2 , 

related works are described such as the AQT and other space 

decomposition algorithms, the leaf-pushing, and the Bloom filter. 

Section 3 describes the proposed leaf-pushing AQT. Section 4 de- 

scribes an implementation technique of our proposed leaf-pushing 

AQT. Section 5 shows the performance comparison of the proposed 

algorithm with the AQT. Section 6 presents a refined structure pro- 

posed for the performance comparison with other space decompo- 

sition algorithms and the comparison results. A brief conclusion is 

given in Section 7 . 

2. Related works 

2.1. Area-based quad-trie (AQT) 

Each input packet is represented as a point in the geometrically 

represented rule space. Space decomposition algorithms provide a 

search method using a trie or a tree structure to find the rules cov- 

ering the point. In this paper, the term trie is differentiated from 

the term tree as follows. A trie is also an ordered tree-based data 

structure, but the trie has a unique property. In a trie structure, 

all the descendants of a node have a common prefix of the string 

associated with that node. For example, all the descendants of a 

node associated with string 0 are associated with a string starting 

with 0. 

An area-based quad-trie (AQT) considers a 2-D search space 

composed of a source prefix in the x -axis and a destination prefix 

in the y -axis. Each rule is represented as a rectangular area spec- 

ified by the source prefix and the destination prefix of the rule. 

Table 1 shows an example set of rules to describe an AQT. The 

wildcard represented by ∗ means that the following bits can be 

either 0 or 1. 

Fig. 1 shows the decomposed space specified by two fields of 

each rule, F 1 and F 2, which represent the source prefix and the 

destination prefix, respectively. The interval covered by a prefix in 

an axis is inversely related to the length of the prefix; the shorter 

prefix generates the larger interval. For example, the wildcard is a 

length 0 prefix and it covers the entire interval in an axis. 

Fig. 1. Rules in decomposed space of AQT. 

Fig. 2. Area-based quad-trie (AQT). 

The AQT uses a recursive decomposition method combined with 

a trie structure. The AQT is a 2-D version for the packet classifica- 

tion of a binary trie for an IP address lookup [11] . Fig. 2 shows the 

AQT constructed to provide a search method for the decomposed 

space of Fig. 1 . The search space shown in Fig. 1 is recursively de- 

composed by 4 equal-sized square planes (planes 0, 1, 3, and 2 by 

naming clockwise from the bottom-left plane). The entire search 

space is mapped to the root node, and the four square planes that 

divide the entire search space correspond to the 4 children of the 

root node, and so on. Among the rules included in a square plane, 

if any side of the rectangular area covered by a rule crosses the en- 

tire interval of the plane, the rule is included in the crossing filter 

set (CFS) of the plane. 

The construction procedure of the AQT shown in Fig. 2 can be 

described using codewords that are generated by combining each 

bit of the source prefix and the destination prefix of the rules. 

Rules included in the CFS of a plane have the same codeword, 

which is generated based on the shorter length of the two prefixes 

in each rule. They are stored in the corresponding node, where the 



Download English Version:

https://daneshyari.com/en/article/4954378

Download Persian Version:

https://daneshyari.com/article/4954378

Daneshyari.com

https://daneshyari.com/en/article/4954378
https://daneshyari.com/article/4954378
https://daneshyari.com

