
Computer Networks 122 (2017) 43–55

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Partial flow statistics collection for load-balanced routing in software

defined networks

Hongli Xu

∗, Xiang-Yang Li , Liusheng Huang , Yang Du , Zichun Liu

School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China

a r t i c l e i n f o

Article history:

Received 19 September 2016

Revised 19 January 2017

Accepted 7 April 2017

Available online 18 April 2017

Keywords:

Software defined networks

Partial flow statistics collection

Approximation

Primal-dual

Load balancing

a b s t r a c t

In a software defined network (SDN), it is usually required to frequently collect state/statistics of all the

flows, which may result in large overhead on control links. To reduce the flow re-routing overhead, we

perform load-balanced routing using the traffic knowledge by carefully taking flow statistics collection.

A key challenge for achieving effective almost-optimal load-balanced routing with less overhead relies

on the quality of flow statistics collection. To address this challenge, we propose a partial flow statistics

collection (PFSC) problem, in which we need to inquire statistics of flows from a subset of switches such

that the flow recall ratio on every switch is at least a given value β ∈ (0, 1] while minimizing the num-

ber of queried switches. We prove that the PFSC problem is NP-Hard and present an algorithm based

on primal-dual with an approximation factor f
β

in most situations, where f is the maximum number of

switches visited by each flow. To further reduce the overhead, we design an adaptive flow statistics col-

lection mechanism, as a complementary scheme for PFSC, based on link load similarity measurement.

We implement our partial flow statistics collection algorithm and a load-balanced routing method on a

testbed platform. Our extensive experimental and simulation results show that our methods can reduce

the overhead by 56% compared with the previous collection method while preserving a similar routing

performance (with peak-load ratio increased by ∼3%).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The software defined network (SDN) [17] is an emerging net-

working paradigm that separates the control and data (or forward-

ing) planes on the independent devices. In general, an SDN com-

prises two main components: SDN controllers and SDN switches.

More specifically, one or several controllers constitute the control

plane of an SDN, and determine the forwarding path of each flow.

A set of switches constitute the data plane of an SDN, and response

for packet forwarding and traffic measurement of each flow. Since

the controller is able to provide centralized route control for all

flows, an SDN helps to improve the network resource utilization

and alleviate link congestion compared with traditional (or non-

SDN) networks [20] .

Many previous works, e.g. , [18,21] , have shown that the effi-

cient route configuration depends on the current workload (or the

traffic intensity of each flow) in a network. Without accurate traf-

fic knowledge or only with outdated/inaccurate traffic knowledge,

the controller just blindly performs routing for incoming flows,

which may result in significantly suboptimal networking perfor-

∗ Corresponding author.

E-mail address: xuhongli@ustc.edu.cn (H. Xu).

mance, such as load imbalance. We should note that, even though

the controller does not know the traffic intensity of a new-arrival

flow beforehand, the controller can adjust the route of this flow

after the flow traffic intensity is measured on a switch. Therefore,

a global view of flow intensity is instrumental to effective routing

of flows.

In an SDN, switches are able to measure different per-flow traf-

fic statistics, including packets, bytes or duration, so that accu-

rate flow intensity can also be derived. Thus, to provide efficient

routing for each flow, it is necessary to obtain the flow traffic

statistics from switches. OpenFlow [5] specifies two different ap-

proaches, push-based and pull-based , for flow traffic statistics col-

lection. We will explain these two methods in Section 2.1 . In many

practical scenarios, the traffic intensity of some flows may vary dy-

namically [8] . To provide smarter route selection, the pull-based

collection mechanism requires that the flow statistics should be

collected frequently enough for efficient flow scheduling [12] . Ac-

cordingly, this will generate massive traffic overhead through con-

trol links between switches and the controller. For example, it

takes 88 bytes for traffic statistics of each flow entry using the

HP ProCurve 5406zl switch [1] . Then, reading the statistics for

16K exact-matched rules supported on the 5406zl would return

1.4 MB; doing this twice per second would require about the

http://dx.doi.org/10.1016/j.comnet.2017.04.028

1389-1286/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comnet.2017.04.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.04.028&domain=pdf
mailto:xuhongli@ustc.edu.cn
http://dx.doi.org/10.1016/j.comnet.2017.04.028

44 H. Xu et al. / Computer Networks 122 (2017) 43–55

22.5 Mbps bandwidth on a control link. The massive statistics traf-

fic brings some disadvantages for an SDN. First , the massive traffic

on control links may increase the delay and loss ratio of control

commands. More seriously, the loss of control packets will result

in running error or network paralysis in an SDN. For example, if

one route update command is lost, some paths may be disrupted

[18] . Second , when a switch reports the new-arrival message to the

controller, this message may be processed until the statistics traf-

fic has been processed, which will increase the blocking delay for

the new-arrival flows and make the user experience worse. Thus,

we expect to provide the efficient route in an SDN with minimum

flow traffic statistics collection overhead.

Since one switch will measure the traffic of each forwarded

flow in a network, a natural way for reducing the statistics col-

lection overhead is to select a minimum subset of switches so that

the traffic statistics information of all the flows in a network can

be gathered by the controller [30,36] . This is essentially a mini-

mum set cover problem. The previous works [32] also addressed

the issue of switch selection for collecting the traffic statistics in-

formation of all the flows. As shown by our experimental results

in Section 2.2 , the statistics information of partial flows also helps to

achieve almost-optimal load balancing as that of all the flows . That

is, it is not necessary to collect the full flow statistics for efficient

routing.

Based on collected flow statistics, we can perform load-

balanced routing, so as to achieve the trade-off optimization be-

tween flow statistics collection overhead and route performance.

A key challenge for achieving effective and almost-optimal load-

balanced routing relies on the quality of flow statistics collection.

To address this challenge, we propose a partial flow statistics col-

lection (PFSC) problem, in which we need to inquire intensities of

all flows from a subset of switches such that the flow recall ratio

on every switch is at least a given value β ∈ (0, 1] while mini-

mizing the number of queried switches. Note that, to reduce the

flow statistics collection overhead, one may say that another way

is to collect statistics information of β-fraction of all flows in a

network. As all flows distribute across a network, if we only re-

quire traffic statistics of fraction of all flows, the flow recall ratio

on some switches may be smaller (even close to zero under the

worst case). As a result, the dynamic traffic change through these

switches may result in local load-imbalance or congestion. We also

show that our flow statistics collection scheme helps to improve

the route performance compared with only having fraction of all

the flows in a network in Section 4 . The main contributions of this

paper are:

1. We prove that the PFSC problem is NP-hard and present an

approximation algorithm, called SCPD, based on a primal-dual

method. The SCPD algorithm achieves the approximation factor

of f
β

in many situations, where f is the maximum number of

switches visited by each flow in a network, and β is the re-

quired flow recall ratio on each switch.

2. To provide the route efficiency and reduce the flow statis-

tics collection overhead, we then describe an adaptive flow

statistics collection mechanism, based on (switch) port statis-

tics knowledge, for efficient routing by exploiting the similarity

among link loads.

3. We implement the proposed partial flow statistics collection

method, and an efficient flow re-routing mechanism based on

the collected flow statistics information on an SDN platform.

The testing results and the extensive simulation results show

that our proposed method helps to reduce the collection over-

head by 56% compared with the previous pull-based method

while preserving the similar routing performance where the

peak-load ratio is increased by only 3 − 5% .

The rest of this paper is organized as follows. Section 2 de-

scribes the challenges in the PFSC problem. We propose an

approximation algorithm based on primal-dual, design a re-

routing method, and describe an adaptive collection mechanism

in Section 3 . We implement our proposed flow statistics collec-

tion algorithm on the SDN testbed, and report our extensive ex-

periment/simulation results in Section 4 . We review related work

in Section 5 and conclude the paper in Section 6 .

2. Preliminaries

We first introduce the network and flow models in an SDN.

Then, motivated by the experimental observation, we define the

partial flow statistics collection problem.

2.1. Network and flow models

An SDN typically consists of two device sets: a controller, and a

switch set, V = { v 1 , . . . , v n } , with n = | V | . These switches comprise

the forwarding (or data) plane of an SDN. Thus, the network topol-

ogy from a view of the date plane can be modeled by G = (V, E) ,

where E is a set of links connecting switches. Besides these links in

the data plane, there are a set of control links connecting switches

and the controller. We assume that each flow is unsplittable for the

following reason. Though the splittable flow scheme [18] can im-

prove the route performance compared with the unsplittable flow

scheme, it needs additional management mechanisms, such as traf-

fic amount division and multi-path packet order maintenance, etc.

These operations will incur additional costs and accordingly de-

crease the resource utilization in an SDN.

Under the SDN architecture, flow tables play an important role

to provide different functions, such as packet forwarding and traf-

fic statistics, etc. . A flow table consists of many flow entries (e.g. ,

16K on the 5406zl switch [1]), and a standard flow entry (e.g. , on

the H3C S5120-28SC-HI switch) is illustrated in Fig. 1 . The match

fields and priority together identify a unique entry in the flow ta-

ble. For simplicity, if the priority field is the same for all the en-

tries, each flow entry can be identified only by match fields. When

a flow arrives at a switch, the header packet will be matched with

all the flow entries. There are two cases of the matching result.

If one flow entry is matched, this switch directly takes the action

specified by the instruction field in the matched entry. For exam-

ple, one flow may be forwarded to the designated port. Otherwise,

the switch reports the header packet of this flow to the controller.

The controller shall determine the route for this flow, and set up

a new entry on this switch. After that, the switch will count the

flow traffic intensity through the counters field. The controller can

send a Read-State message to retrieve the statistics of all the flows

through a switch. To reduce the control overhead, the efficient se-

lection of switches for flow statistics collection is the main focus

of this paper.

OpenFlow [5] specifies two different approaches for flow traf-

fic statistics collection. One is the push-based mechanism. The con-

troller learns the start of a flow whenever it is setting up an en-

try in the flow table of a switch. When the switch detects the

significant intensity change of a flow, the switch will report it

to the controller. Moreover, OpenFlow allows the controller to re-

quest an asynchronous notification when a flow entry is removed

from a switch, as the result of a controller-specified per-flow time-

out [12] . However, several factors limit its application in practice.

First , different from OpenFlow’s specification, most current com-

modity switches do not inform the controller about the behavior of

a flow before the flow entry times out. Second , it needs some ad-

ditional requirements on both hardware and software to support

the push-based flow statistics collection. For example, it requires

Download English Version:

https://daneshyari.com/en/article/4954584

Download Persian Version:

https://daneshyari.com/article/4954584

Daneshyari.com

https://daneshyari.com/en/article/4954584
https://daneshyari.com/article/4954584
https://daneshyari.com

