
Applied Soft Computing 21 (2014) 286–297

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

Comparative analysis of statistical and machine learning methods for
predicting faulty modules

Ruchika Malhotra
Department of Software Engineering, Delhi Technological University, Bawana Road, Delhi 110042, India

a r t i c l e i n f o

Article history:
Received 25 October 2011
Received in revised form 26 January 2014
Accepted 22 March 2014
Available online 31 March 2014

Keywords:
Software quality
Static code metrics
Logistic regression
Machine learning
Receiver Operating Characteristic (ROC)
curve

a b s t r a c t

The demand for development of good quality software has seen rapid growth in the last few years. This
is leading to increase in the use of the machine learning methods for analyzing and assessing public
domain data sets. These methods can be used in developing models for estimating software quality
attributes such as fault proneness, maintenance effort, testing effort. Software fault prediction in the early
phases of software development can help and guide software practitioners to focus the available testing
resources on the weaker areas during the software development. This paper analyses and compares the
statistical and six machine learning methods for fault prediction. These methods (Decision Tree, Artificial
Neural Network, Cascade Correlation Network, Support Vector Machine, Group Method of Data Handling
Method, and Gene Expression Programming) are empirically validated to find the relationship between
the static code metrics and the fault proneness of a module. In order to assess and compare the models
predicted using the regression and the machine learning methods we used two publicly available data
sets AR1 and AR6. We compared the predictive capability of the models using the Area Under the Curve
(measured from the Receiver Operating Characteristic (ROC) analysis). The study confirms the predictive
capability of the machine learning methods for software fault prediction. The results show that the Area
Under the Curve of model predicted using the Decision Tree method is 0.8 and 0.9 (for AR1 and AR6 data
sets, respectively) and is a better model than the model predicted using the logistic regression and other
machine learning methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As the size and complexity of the software is increasing day by
day, it is usual to produce software with faults. The identification
of faults in a timely manner is essential as the cost of correcting
these faults increases exponentially in the later phases of the soft-
ware development life cycle. Hence, testing is a very expensive
process and one-third to one-half of the overall cost is allocated
to the software testing activities [47]. There are several approaches
being proposed to detect the faults in the early phases of the soft-
ware development [47]. This motivates the development of fault
prediction models that can be used in classification of a module as
fault prone or not fault prone.

Several static code metrics have been proposed in the past to
capture various aspects in the design and source code, for exam-
ple [17,22,35]. These metrics can be used in developing the fault
prediction models. The prediction models can then be used by the

E-mail address: ruchikamalhotra2004@yahoo.com

software organizations during the early phases of software devel-
opment to identify faulty modules. The software organizations can
use these subset of metrics amongst the available large set of soft-
ware metrics. The metrics are computed from the proposed model
to obtain the information about the quality of the software and
can be assessed in the early stages of software development. These
quality models will allow the researchers and software practition-
ers to focus the available testing resources on the faulty areas of
the software, which will help in producing a improved quality, low
cost and maintainable software. The static code metrics have been
advocated as widely used measures in the literature [9,36,37].

The machine learning (ML) methods have been successfully
applied over the years on a range of problem domains such as
medicine, engineering, physics, finance and geology. These meth-
ods have also started being used in solving the classification and
control problems [1,11–13,34,56]. In the existing literature, the
researchers have used various methods to establish the relation-
ship between the static code metrics and fault prediction. These
methods include the traditional statistical methods such as logistic
regression (LR) [8,26,32,39] and the machine learning (ML) meth-
ods such as decision trees [16,25,27,29,30,33,42,46,49,52], Naïve

http://dx.doi.org/10.1016/j.asoc.2014.03.032
1568-4946/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2014.03.032
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.03.032&domain=pdf
mailto:ruchikamalhotra2004@yahoo.com
dx.doi.org/10.1016/j.asoc.2014.03.032


R. Malhotra / Applied Soft Computing 21 (2014) 286–297 287

Bayes [6,9,10,38,41,49], Support Vector Machines [52,54], Artificial
Neural Networks [28,33,38]. However, few studies compare the LR
models with the ML models for software fault prediction using the
static code metrics. Hall et al. [18] concluded that more quality
studies should be conducted for software fault prediction using
ML methods and Menzies et al. [36] advocated the use of public
data sets for software fault prediction. It is natural for the software
practitioners and potential users to wonder, “Which ML method
is best?”, or more realistically, “Is the predictive capability of the
ML methods comparable or better than the traditional LR meth-
ods?”. For this reason, this paper compares the model predicted
using the LR method with the models predicted using the widely
used ML methods and rarely used ML methods (Cascade Correla-
tion Network (CCN), Group Method of Data Handling Polynomial
Method (GMDH), Gene Expression Programming (GEP)). The evi-
dence obtained from the data based empirical studies can help
the software practitioners and researchers in obtaining the most
powerful support for accepting/rejecting a given hypothesis [2].
Hence, conducting empirical studies to compare the models pre-
dicted using the LR and the ML methods is important to develop
adequate body of knowledge so that the well formed and widely
accepted theories can be produced.

The main motivation of the paper is threefold: (1) to show the
performance of the ML methods such as Support Vector Machines
(SVM), Decision Tree (DT), CCN, GMDH and GEP for software fault
prediction; (2) to compare and assess the predictive performance
of the models predicted using the ML methods with the model pre-
dicted using the LR methods; and (3) to evaluate the performance
capability of the ML methods using public data sets, i.e. across two
systems.

Thus, in this work we (1) build fault proneness models and (2)
empirically compare the results of the LR and the ML methods. In
this paper, we investigate the below issues:

1. How accurately and precisely do the static code metrics predict
faulty modules?

2. Is the performance of the ML methods better than the LR
method?

The validation of the models predicted using the LR and the
ML methods is carried out using Receiver Operating Characteris-
tic (ROC) analysis. We use the ROC curves to obtain the optimal cut
off point that provides balance between the faulty and non faulty
modules. The performance of the models constructed to predict
faulty or non faulty modules is evaluated using the Area Under
the Curve (AUC) obtained from the ROC analysis [11]. In order to
perform the analysis we validate the performance of these meth-
ods using public domain AR1 and AR6 data sets. The AR1 and AR6
data sets consist of 121 and 101 modules, respectively. These data
sets were developed using C language [35]. The data are obtained
from the Promise data repository [35] and collected by Software
Research Laboratory (Softlab), Bogazici University, Istanbul, Turkey
[19]. Thus, the main contributions of the paper are: first, we per-
formed the comparative analysis of the models using the LR method
with the models predicted using the ML methods for prediction of
faulty modules. Second, we analyze public domain and industrial
data sets, hence analysing valuable data in an important area. Third,
we analyze six ML methods and apply ROC analysis to determine
their effectiveness.

The paper is organized as follows: Section 2 presents the
research background that summarizes the static code metrics
included and describes the sources from which the data is collected.
Section 3 describes the descriptive statistics and the performance
measures used for model evaluation. The results of model pre-
diction are presented in Section 4 and the models are validated

in Section 5. Section 6 summarized the threats to validity of the
models and the conclusions of the work are given in Section 7.

2. Research background

In this section we present the dependent and independent vari-
ables used in this paper (Section 2.1). We also describe the data
collection procedure in Section 2.2.

2.1. Dependent and independent variables

Fault proneness is the binary dependent variable in this work.
Fault proneness is defined as the probability of fault detection in a
module [2,4,7]. We use the LR method, which is based on probabil-
ity prediction. The binary dependent variable is based on the faults
that are found during the software development life cycle.

For this study, we predict fault prone modules from static code
metrics defined by Halstead [17], and McCabe [35]. The software
metrics selected in this paper are procedural and module based
metrics, where a module is defined as the smallest individual unit
of functionality. We find the relationship of the static code metrics
with fault proneness since they are “useful”, “easy to use”, and
“widely used” metrics [36].

First, the static code metrics are known as useful as they have
shown higher probability of fault detection in past [36]. The results
in this study also show that the correctly predicted percentage of
faulty modules was high. Second, the metrics like lines of code and
the metrics given by Halstead and McCabe [17,35] can be com-
puted easily and at low cost, even for very large systems [30]. Third,
many researchers have used the static code metrics in the litera-
ture [8,25–30,32,33,38–42,46,49,52–54]. It has been stated in [36]
that “Verification and Validation textbooks advise using static code
complexity metrics to decide which modules are worthy of manual
inspections”. Table 1 presents the static code metrics chosen in this
study.

2.2. Empirical data collection

This study makes use of two public domain data sets AR1 and
AR6 available in the Promise data repository [45] and donated by
Software Research Laboratory (Softlab), Bogazici University, Istan-
bul, Turkey [23]. The data in AR1 and AR6 are collected from embed-
ded software in a white-goods product. The data was collected
and validated by the Prest Metrics Extraction and Analysis Tool
[44] available at http://softlab.boun.edu.tr/?q=resources&i=tools.
The data in AR1 and AR6 was implemented in the C programming
language. Both the data sets were collected in 2008 and donated
by Softlab in 2009. The AR1 system consists of 121 modules (9
faulty/112 non faulty). The AR6 system consists of 101 modules (15
faulty/86 non faulty). Both the data sets comprise of 29 static code
attributes (McCabe, Halstead and LOC measures) and 1 fault infor-
mation (false/true). Table 2 summarizes the distribution of faulty
modules in the AR1 and AR6 data sets. The table shows that 7.44%
of modules were faulty in the AR1 data set and 14.85% of modules
were faulty in the AR6 data set.

3. Research methodology

In this section, steps taken to analyze the static code metrics are
described.

3.1. Descriptive statistics and outlier analysis

Before further analysis can be carried out, the data set must
be suitably reduced by analysing it and then drawing meaningful

http://softlab.boun.edu.tr/?q=resources&i=tools


Download English Version:

https://daneshyari.com/en/article/495460

Download Persian Version:

https://daneshyari.com/article/495460

Daneshyari.com

https://daneshyari.com/en/article/495460
https://daneshyari.com/article/495460
https://daneshyari.com

