
Computer Networks 124 (2017) 46–60 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Throughput optimization of TCP incast congestion control in 

large-scale datacenter networks 

Lei Xu 

a , Ke Xu 

a , ∗, Yong Jiang 

b , Fengyuan Ren 

a , Haiyang Wang 

c 

a Department of Computer Science & Technology, Tsinghua University, Beijing, China 
b Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China 
c Department of Computer Science at the University of Minnesota Duluth, MN, USA 

a r t i c l e i n f o 

Article history: 

Received 25 May 2016 

Revised 29 May 2017 

Accepted 5 June 2017 

Available online 6 June 2017 

Keywords: 

Datacenter networks 

Transport protocol 

Switch queue 

Incast 

Congestion control 

a b s t r a c t 

The many-to-one traffic pattern in datacenter networks leads to Transmission Control Protocol (TCP) in- 

cast congestion and puts unprecedented pressure to cloud service providers. The abnormal TCP behaviors 

in incast increase system response time and unavoidably reduce the applicability of cloud-based system 

deployments. This paper proposes Receiver-oriented Congestion Control (RCC) to address heavy incast 

in large-scale datacenter networks. RCC is motivated by oscillatory queue size of switch when handling 

heavy incast and substantial potential of receiver in congestion control when using TCP. RCC makes effec- 

tive use of centralized scheduler and Explicit Congestion Notification (ECN) at receiver. The RCC prototype 

is realized in network simulator 3 (ns3) which implements TCP exactly. This paper details the RCC design 

and evaluates its performance in diverse and heavy workloads. The evaluation results indicate that RCC 

has an average decreases of 47.5% in the mean queue size and 51.2% in the 99th-percentile latency in the 

heavy incast over TCP. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

The emergence of cloud computing as an efficient means pro- 

viding computation can already be felt with the burgeoning of 

cloud-based applications. Such systems as iCloud, Dropbox, Face- 

book and Amazon EMR have enjoyed phenomenal growth over the 

past few years. For instance, Facebook announced that they had 

Hadoop clusters with 100 petabyte (PB) data across more than 

50,0 0 0 servers [1] . Other systems as Azure, Dropbox, iCloud are 

also attracting an increasing number of users and scaling their sys- 

tem deployments on datacenter networks [2,3] . The trend of large- 

scale datacenter networks is irresistible. 

The datacenter networks in this paper are regarding wired 

networks instead of wireless datacenter networks [4] . The ubiq- 

uitous many-to-one traffic pattern in datacenter networks poses 

challenges for Transmission Control Protocol (TCP). As illustrated 

in Fig. 1 , the many-to-one traffic pattern occurs on the parti- 

tion/aggregate architecture where many work nodes transmit data 

to the aggregator node. This can easily cause the TCP incast Con- 

∗ Corresponding author. 

E-mail addresses: l-xu12@mails.tsinghua.edu.cn (L. Xu), 

xuke@mail.tsinghua.edu.cn (K. Xu), jiangy@sz.tsinghua.edu.cn (Y. Jiang), 

renfy@mail.tsinghua.edu.cn (F. Ren), haiyang@d.umn.edu (H. Wang). 

gestion problem in datacenter networks [5–8] . In incast, data flows 

experience severe packet-drops and long Flow Completion Times 

(FCTs), bringing users poor Quality of Service (QoS) and enterprise 

revenue loss [9–11] . It is necessary to design protocols according 

to network environments [12] . 

To mitigate this problem, network researchers have proposed 

effective protocol designs, such as Incast congestion Control for TCP 

(ICTCP) and Data Center TCP (DCTCP) [13,14] . DCTCP is a pioneer of 

datacenter transport protocols. Using the Explicit Congestion Noti- 

fication (ECN) mechanism, DCTCP suppresses queue buildups and 

packet-drops [13] . H. Wu et al. proposed ICTCP, which controls con- 

gestion windows by monitoring receiver throughput. It is the first 

attempt to control rates of flows at receiver [14] . These protocols 

are effective for common incast instead of heavy incast which is 

explained in Section 3.1 . 

This paper designs a novel transport protocol in congestion 

control for heavy incast to satisfy requirements from large-scale 

datacenter networks. Firstly, we investigate heavy incast and its 

cause. Second, we propose Receiver-oriented Congestion Control 

(RCC) based on TCP, a mechanism that allows receiver to dominate 

congestion control. RCC leverages both an open-loop congestion 

control, i.e., centralized scheduler, and a closed-loop congestion 

control, i.e., ECN, at receiver to respond to congestion. On the 

one hand, in RCC, ECN is deployed at receiver to achieve normal 

http://dx.doi.org/10.1016/j.comnet.2017.06.004 

1389-1286/© 2017 Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.comnet.2017.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.06.004&domain=pdf
mailto:l-xu12@mails.tsinghua.edu.cn
mailto:xuke@mail.tsinghua.edu.cn
mailto:jiangy@sz.tsinghua.edu.cn
mailto:renfy@mail.tsinghua.edu.cn
mailto:haiyang@d.umn.edu
http://dx.doi.org/10.1016/j.comnet.2017.06.004


L. Xu et al. / Computer Networks 124 (2017) 46–60 47 

Fig. 1. Partition/aggregate architecture. 

congestion control in datacenters [13] . 1 On the other hand, the 

centralized scheduler is used to suppress the burstiness of incast. 

The previous work of RCC is in [15] and this paper details its 

design and evaluations. 

Integrating the open- and closed-loop congestion controls at re- 

ceiver is challenging for two reasons. First, the congestion control 

at receiver has to be compatible with that of TCP. Further, they 

belong to different types in terms of congestion mechanisms. This 

paper shows that by arranging the above two congestion controls 

in a reasonable order, the receiver coordinates different congestion 

decisions effectively. 

Our contributions are as follows: 

• This paper teases out the factors impacting transport perfor- 

mance and identifies the root reasons of incast congestion in 

large-scale datacenter networks. 

• We design the receiver congestion control and combine open- 

and closed-loop congestion controls at receiver. To the best of 

our knowledge, this is the first attempt to improve transport 

protocols by combining two congestion controls at receiver. 

• We provide a prototype of RCC and evaluate its performance in 

network simulator 3 (ns3). 2 

The rest of this paper is organized as follows. Section 2 of- 

fers related work; Section 3 describes the motivations of RCC; 

Section 4 details the design of RCC. Section 5 details the analy- 

sis of RCC factors. Section 6 further evaluates the performance of 

RCC in terms of heavy incast, etc. Finally, Section 7 concludes the 

paper. 

2. Related work 

Congestion control protocols have been developed for many 

years with the evolution of the Internet. Network researchers have 

been improving transport protocols to suit different circumstances 

all the time. The majority of protocols spring up based on Trans- 

mission Control Protocol (TCP) [16] . The state-of-the-art TCP makes 

effective use of bandwidth by adjusting window sizes according 

to the Additive-Increase and Multiplicative-Decrease (AIMD) ap- 

proach. The following presents typical TCP-based protocols in brief. 

1 Congestion Experienced (CE) bits in IP headers and ECN-Echo (ECE) bits in TCP 

headers have been used to convey congestion information in ECN packets. We use 

the term ECN packets to describe the packets that are marked either with the ECE 

code point in TCP headers or with the CE code point in IP headers. 
2 The C++ codes of RCC in ns3 are fully accessible at https://github.com/thuxl/ 

rdtcp . 

TCP Reno is proposed to improve TCP throughput when en- 

countering a packet loss [17] . Further, TCP NewReno adds an algo- 

rithm for partial Acknowledgment (ACK) during the fast recovery 

phase for the same aim [18] . TCP Vegas achieves better through- 

put than TCP Reno. It employs several novel techniques, e.g., Spike 

Suppression and Congestion Detection by throughput [19] . To meet 

the challenges from large Bandwidth and Delay Product (BDP) net- 

works, CUBIC is introduced with a window growth function, which 

is a cubic function of the elapsed time from the last congestion 

event [20] . Another direction of TCP development is code-based 

TCP which is beyond the scope of this paper [21,22] . The above 

protocols mainly focuse on Internet backbone networks rather than 

specified ones such as datacenter networks. 

A chunk of protocols have been proposed for datacenter net- 

works. DCTCP detects congestion degree by ECN packets and makes 

corresponding congestion decisions [13] . DCTCP has suppressed 

queue buildups of switches and mitigated congestion. D 

3 has intro- 

duced deadline into congestion solutions, and it works well with 

deadline flows [23] . Further, D 

2 TCP adds flow deadline to DCTCP 

congestion window control [24] . L 2 DCT advances D 

2 TCP by deploy- 

ing deadline into not only window decreasing but also increment 

[25] . PDQ is proposed completely for flows with priorities, achiev- 

ing an excellent datacenter transmission [26] . Meanwhile, pFabric 

employs priority switch queues and simplified TCP to achieve out- 

standing datacenter transport [27] . PASE synthesizes existing trans- 

port strategies to suit the need of datacenter networks [28] . Re- 

cently, TIMELY is designed based on the Round Trip Time (RTT) 

mechanism [29] . 

Receiver-oriented mechanisms have been proposed for several 

years. There are typical implementations for different contexts 

[14,30,31] . ICTCP utilizes throughput detection at receiver to im- 

prove transport efficiency of datacenter networks in [14] . TCP-Real 

leverages receiver’s ability of decoupling packet loss from window 

adjustments to avoid unnecessary back-offs [30] . T CP-RTM makes 

receivers ignore unimportant packet loss for multimedia applica- 

tions in [31] . Recent work [32] also leverages receiver’s ability on 

detecting actual throughput on the attached link. These procotols 

reflect the feasibility to deploy congestion control at receiver and 

receiver’s potential of congestion control. 

A notable receiver-oriented proposal to cope with incast con- 

gestion is PAC [33] . Through a proactive ACK control, PAC is able 

to cope with heavy incast in datacenter networks. PAC has proved 

that receiver-oriented method is effective in solving incast prob- 

lems. The main difference between PAC and RCC is that PAC does 

not touch TCP-related protocols while RCC is completely a TCP- 

related protocol. 

The following section describes the motivations and objectives 

of RCC. 

3. Motivations 

3.1. Queue buildup and packet loss 

To analyze heavy incast, this section mimics incast with 50 and 

80 senders sending short flows to the same receiver. All the hosts 

are connected to an 81-port switch whose queue size is 128 KB 

(i.e., 80 1500-B packets). The starting time of 80 senders complies 

with exponential distribution with the mean of 15 ms. Hence they 

are called as randomized senders. Each sender sends 32 KB flow. 

The link delay is 40 μs and the link bandwidth is 1 Gbps. The real 

time size of the output queue in the last-hop switch are plotted 

for three protocols, TCP, DCTCP and ICTCP, in Fig. 2 (a) and (b). 

In the randomized scenarios in Fig. 2 (a) and (b), the queue 

oscillations are severe. With the increasing number of senders, 

i.e., 80 senders, oscillation occurs more frequently and fiercely in 

Fig. 2 (b). These two figures show that with increasing senders, 

https://github.com/thuxl/rdtcp


Download English Version:

https://daneshyari.com/en/article/4954633

Download Persian Version:

https://daneshyari.com/article/4954633

Daneshyari.com

https://daneshyari.com/en/article/4954633
https://daneshyari.com/article/4954633
https://daneshyari.com

