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a b s t r a c t

In this paper the fault detection problem is solved using an alternative methodology based on a
fuzzy/Bayesian strategy combining a Bayesian network and the fuzzy set theory. The new important
issue in this proposed methodology is to address uncertainties in the input of the Bayesian Network. This
contribution is possible since the fuzzy set theory is used as the knowledge representation. To illustrate
the technique, the fault detection problem in induction machine stator-winding is considered. Specifi-
cally, the faults in the induction machine stator-winding are detected by a state change of stator current.
Simulation results are presented to illustrate the advance of the proposed methodology when compared
to standard Bayesian network.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fault detection and analysis is a very important strategy that is
commonly employed in the industry with the purpose of allowing a
cost–effective maintenance policy, keeping productivity standards
and ensuring safety. The fault analysis gives support for the design
of corrective actions, system redundancies, and safety policies in
order to mitigate the effects of a fault [1]. A fault diagnosis proce-
dure is typically divided into three tasks: (i) the fault detection,
indicating the occurrence of some fault in a monitored system;
(ii) the fault isolation, establishing the type and/or location of the
fault; and (iii) the fault identification, determining the magnitude
of the fault. After a fault has been detected and diagnosed, in some
applications it is required that the fault be self-corrected, usually
through controller reconfiguration. This is usually referred to as
fault accommodation.

The literature presents several classes of strategies to deal with
fault detection and isolation (FDI) [2]. These strategies can be, in
general, divided in quantitative approach. These strategies are, in
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general, divided into two kind of approaches: (i) quantitative [3]
and qualitative [4,5].

Most of the quantitative approaches are based on the knowl-
edge of mathematical models of the plant. Many survey papers with
different emphasis on various quantitative approaches have been
published over the past years. The main approaches in this context
are based on (unknown input) observers [2,6–10], parity relations
[2,11] and Kalman or robust filters [2,12–15]. The requirement of
a mathematical model of the plant can lead to several difficulties
in the implementation of these approaches, for instance due to fac-
tors such as system complexity, high dimensionality, nonlinearities
and parametric uncertainties. Further, in the case the neural net-
work plays a role as an observer, it falls into the class of quantitative
approaches [16,17].

On the other hand, most of the qualitative approaches are
based on some pattern analysis of the historic process data.
The main related approaches are: signed directed graph [18–20],
fault tree [21], fuzzy system [22–24], qualitative trend analysis
[25–28], mutual information [29], neural networks [30,31] (in the
case of classification), artificial immune systems [32–34], Bayesian
networks [35–39] and the combination of techniques [40].

In this paper, a new qualitative approach for fault detection is
presented. This new approach is based on a Fuzzy/Bayesian rep-
resentation. Unlike the traditional Bayesian networks as reported
in [37–39], the Fuzzy/Bayesian proposed in this paper combine
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the potential for aggregation of information/knowledge of the
fuzzy sets theory for processing input uncertainties in the
Bayesian network – for simplicity we will call this combination
of fuzzy/Bayesian network. The approach proposed in this paper
was motivated by the approaches presented in [41,42]. Although
references [41,42] deal with the problem proposed in this paper,
the approach proposed in [42] solve the problem of only one
unknown evidence, and [41] needs several traditional Bayesian
network information, beyond the necessity of conditional inde-
pendence of evidence. In the next section this topic is considered
deeply. To illustrate the efficiency of the proposed methodology,
the problem of fault detection in the stator winding of induction
machine is presented.

The paper is organized as follows. Section 2 shows a new
Fuzzy/Bayesian Network approach. Section 3 presents and ana-
lyzes the induction machine simulation considering the case of
fault on stator-winding and shows the results for fault detection in
induction machine stator-winding. Finally, Section 4 presents the
concluding remarks.

2. Fuzzy/Bayesian network approach

Bayesian theorem is an effective tool for reasoning under the
condition of uncertainty. Propositions are given numerical param-
eters representing their degree of beliefs under some body of
knowledge, these parameters are then combined and manipu-
lated based on the rules of probability theory. P(Hi | �j) represents
the subjective belief in the hypothesis, Hi, given the knowledge
of the evidence, �j. However, if there is uncertainty in the evi-
dence, the application of the traditional Bayes rule implies to fix
the knowledge of the evidence to belong a given set. Clearly this
a drawback of this kind of approach. In order to solve this prob-
lem, a new Fuzzy/Bayesian inference is proposed in this paper.
Other papers deal with the problem proposed, as in [41,42]. It is
observed that the approach proposed in [42] solve the problem
of only one unknown evidence and [41] needs several traditional
Bayesian network information, beyond the necessity of conditional
independence of evidence �j. The proposed approach is more sim-
ple and differs from [41] because the inference in Fuzzy/Bayesian
network needs only the conditional probability table P(Hi | �1, �2,
. . ., �k) and it is given by:

P(Hi | �̃1, �̃2, . . ., �̃k) =
∑2k

j=1

(
P(Hi | �j1, �j2, . . ., �jk) ∗

∏k
m=1��̃jm

)
∑2k

j=1

(∏k
m=1��̃jm

)
(1)

where: Hi is the hypothesis to be tested, �̃k is the fuzzy evidences.
For each evidence �̃k a pair of membership functions (��̃) is defined
that describes the uncertainty inherent in the evidence description.

The next Theorem plays a crucial rule since it shows that the
summation of the hypothesis given fuzzy evidences is also unitary.
This result allows to make the proposed approach consistent.

Theorem 2.1. The summation of the hypothesis probabilities related
to a set of fuzzy evidences is

n∑
i=1

P(Hi | �̃1, �̃2, . . ., �̃k) = 1 (2)

where n is the number of hypothesis.

Proof. To show that (2) is true take the summation in (1), namely:

n∑
i=1

⎧⎨
⎩

∑2k

j=1

(
P(Hi | �j1, �j2, . . ., �jk) ∗ ∏k

m=1��̃jm

)
∑2k

j=1

(∏k
m=1��̃jm

)
⎫⎬
⎭ (3)

Define P(Hij) � P(Hi | �j1, �j2, . . ., �jk) and

Mj �

∏k
m=1��̃jm∑2k

j=1

(∏k
m=1��̃jm

)

with p � 2k in (3).
Thus (3) may be rewritten as:

n∑
i=1

p∑
j=1

P(Hij)Mj = P(H11)M1 + P(H12)M2 + P(H13)M3 + · · · + P(H1p)Mp

+P(H21)M1 + P(H22)M2 + P(H33)M3 + · · · + P(H2p)Mp

.

.

.

+P(Hn1)M1 + P(Hn2)M2 + P(Hn3)M3 + · · · + P(Hnp)Mp

which is equivalent to:

n∑
i=1

p∑
j=1

P(Hij)Mj = P(H11)M1 + P(H21)M1 + P(H31)M1 + · · · + P(Hn1)M1

+P(H12)M2 + P(H22)M2 + P(H32)M2 + · · · + P(Hn2)M2

.

.

.

+P(H1p)Mp + P(H2p)Mp + P(H3p)Mp + · · · + P(Hnp)Mp

Rewriting the previous equation as:

n∑
i=1

p∑
j=1

P(Hij)Mj = [P(H11) + P(H21) + P(H31) + · · · + P(Hn1)] M1

+ [P(H12) + P(H22) + P(H32) + · · · + P(Hn2)] M2

.

.

.

+ [P(H1p) + P(H2p) + P(H3p) + · · · + P(Hnp)] Mp

Notice that by definition
∑n

i=1P(Hi | �1i, �2i, . . ., �ki) = 1, thus:

p∑
j=1

Mj = 1

and from the definition of Mj, it follows that:

2k∑
j=1

⎛
⎝

∏k
m=1��̃jm∑2k

j=1

(∏k
m=1��̃jm

)
⎞
⎠ = 1

or

2k∑
j=1

k∏
m=1

��̃jm

⎛
⎝ 1∑2k

j=1

(∏k
m=1��̃jm

)
⎞
⎠ = 1

This shows that (2) is unitary as proposed. �

3. Induction machine modeling and simulation with
turn-to-turn short circuit in stator winding

Many studies have shown that a large proportion of induc-
tion machine faults are related to the stator-winding [43–46]. The
induction machine stator-winding is subject to stress due to many
factors, which include thermal overload, mechanical vibration and



Download English Version:

https://daneshyari.com/en/article/495491

Download Persian Version:

https://daneshyari.com/article/495491

Daneshyari.com

https://daneshyari.com/en/article/495491
https://daneshyari.com/article/495491
https://daneshyari.com

