
ARTICLE IN PRESS

JID: COMPNW [m5G; June 11, 2016;15:11]

Computer Networks 0 0 0 (2016) 1–19

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Framework, models and controlled experiments for network

troubleshooting

Francois Espinet a , Diana Joumblatt b , Dario Rossi b , a , ∗

a LIX,CNRS, Ecole Polytechnique, Université Paris Saclay, Palaiseau, France
b LTCI, CNRS, Institut Mines-Telecom, Telecom ParisTech, Université Paris Saclay, Paris, France

a r t i c l e i n f o

Article history:

Received 23 November 2015

Revised 22 March 2016

Accepted 1 June 2016

Available online xxx

Keywords:

Troubleshooting

Emulation

Modeling

Experiments

Root-cause analysis

a b s t r a c t

Growing network complexity mandates automated tools and methodologies for troubleshooting. In this

paper, we follow a crowd-sourcing trend and argue for the need to deploy measurement probes at the

edge of the network, which can be either under the control of the users (e.g., end-user devices) or the

ISP (e.g., home gateways), and that raises an interesting tradeoff.

Our first contribution consists in the definition of a framework for network troubleshooting, and its im-

plementation as open source software named NetProbes. In data mining terms, depending on the amount

of information available to the probes (e.g., ISP topology), we formalize the network troubleshooting task

as either a clustering or a classification problem. In networking terms, these algorithms allow respectively

end-users to assess the severity of the network performance degradation, and ISPs to precisely iden-

tify the faulty link. We solve both problems with an algorithm that achieves perfect classification under

the assumption of a strategic selection of probes (e.g., assisted by an ISP), and assess its performance

degradation under a naive random selection. Our algorithm is generic , as it is agnostic to the network

performance metrics; scalable , as it requires firing only few measurement events and simple processing;

flexible , as clustering and classification stages are pipelined, so that the execution naturally adapts to the

information available at the vantage point where the probe is deployed; and reliable , as it produces re-

sults that match the expectations of simple analytical models.

Our second contribution consists in a careful evaluation of the framework. Previous work on network

troubleshooting has so far tackled the problem with either more theoretical or more practical approaches:

inherently, evaluation methodologies lack either realism or control. In this paper, we counter this problem

by conducting controlled experiments with a rigorous and reproducible methodology that contrasts ex-

pectations yielded by analytical models to the experimental results gathered running our NetProbes soft-

ware in the Mininet emulator. As integral part of our methodology, we perform a thorough calibration of

the measurement tools employed by NetProbes to measure two example metrics of interest, namely de-

lay and bandwidth: we show this step to be crucial, as otherwise significant biases in the measurements

techniques could lead to wrong assessment of algorithmic performance. Albeit our NetProbes software

is far from being a carrier-grade solution for network troubleshooting (since it does not consider nei-

ther multiple contemporary measurements, nor multiple failures, and given that we experiment with a

limited number of metrics), our controlled study allows making several interesting observation that help

designing such an automated troubleshooting system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, broadband Internet access is vital. Many people rely

on online applications in their homes to watch TV, make VoIP calls,

∗ Corresponding author.

E-mail addresses: francois.espinet@polytechnique.edu (F. Espinet),

diana.joumblatt@telecom-paristech.fr (D. Joumblatt), dario.rossi@telecom-

paristech.fr , dario.rossi@polytechnique.edu , dario.rossi@enst.fr (D. Rossi).

and interact with each other through social media and emails.

Many businesses similarly offer their services over the Internet, on

which the very same health of its business thus depends. Unfor-

tunately, dynamic network conditions such as device failures and

congested links can affect the network performance and cause dis-

ruptions (e.g., frozen video, poor VoIP quality, lost customers and

revenue).

http://dx.doi.org/10.1016/j.comnet.2016.06.001

1389-1286/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: F. Espinet et al., Framework, models and controlled experiments for network troubleshooting, Computer Net-

works (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.001

http://dx.doi.org/10.1016/j.comnet.2016.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
mailto:francois.espinet@polytechnique.edu
mailto:diana.joumblatt@telecom-paristech.fr
mailto:dario.rossi@telecom-paristech.fr
mailto:dario.rossi@polytechnique.edu
mailto:dario.rossi@enst.fr
http://dx.doi.org/10.1016/j.comnet.2016.06.001
http://dx.doi.org/10.1016/j.comnet.2016.06.001

2 F. Espinet et al. / Computer Networks 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: COMPNW [m5G; June 11, 2016;15:11]

Currently, troubleshooting performance disruptions is complex

and ad hoc due to the presence of different applications, network

protocols, and administrative domains. Collection of this informa-

tion in a central place is already a daunting task in reason of the

volume of logs: this generally leads to terse description such as

flow records, which are furthermore aggressively sampled to limit

the explosion of measurement data. This tendency negatively im-

pacts the ability to perform troubleshooting, e.g., as seeking cor-

relation from coarse features, with some records missing 1 due to

sampling is a far from ideal situation.

Yet, network troubleshooting is also complex due to the lim-

ited reach ISP have outside their network. Typically, troubleshoot-

ing starts with a user call to the ISP help desk: however, the in-

tervention of the ISP technician is useless if the root cause lies

outside of the ISP network. The fault may be located in the Cloud

offering the service, in some Autonomous System (AS) along the

path, or even within the home network of its very same user. Con-

cerning this last point, we argue that a cooperation of ISPs and

user-applications can be beneficial for troubleshooting purposes.

From the ISP viewpoint, it would be of course valuable to ex-

tend its reach beyond the home-gateway, i.e., by instrumenting ex-

periments directly from end-user devices. Indeed, through home-

gateway, ISPs only have a limited view of user home-network,

which can be a primary source of troubles (e.g., in the case of gate-

ways that are not directly managed by the ISPs, interference with

neighbouring access points, congestion in the home network, or

end-user device issues). From the complementary user-viewpoint,

ISPs can provide extremely valuable information: indeed, while

(tech savvy) users can leverage a number of troubleshooting tools

[1–4] which automate a number of useful measurements, however

these tools are generally ISP-network agnostic and cannot embed

tomography techniques [5,6] to identify the root causes (e.g., faulty

links) of network disruption.

In this paper, we propose a practical methodology to auto-

mate the identification of network performance disruption based

on end-to-end measurements. Our proposal is to decouple mea-

surement from inference: we let end-device the burden of con-

trolling experiments and collecting results, but do not mandates

the troubleshooting process to run on the same end-devices. This

distributed approach implicitly alleviates control bottlenecks, while

still allowing the ISPs to assist the measurement process (e.g., by

biasing the set of measurement, or their spatial reach). At the same

time, decoupling measurement collection from measurement anal-

ysis requires to cope with a flexible workflow, where the amount

of knowledge at disposal of the inference algorithm may vary. In-

deed, devices participating in the troubleshooting task can be ei-

ther under the control of the ISP or the end-user: in the former

case, knowledge of the ISP topology can be leveraged by IETF ALTO

servers to realize a strategic nodes selection, whereas in the lat-

ter case absence of topology information means that only sim-

pler randomized selection can be implemented. This difference fur-

ther exacerbates in the troubleshooting task, that we formalize as

a pipelined algorithm: a first clustering stage available to all users

allows to just assess the severity of the fault, whereas a second

classification stage further allows ISPs to identify the faulty link.

While our work is not the first to address the problem of net-

work troubleshooting, we note that related effort can be roughly

split in two main branches. On the one hand, there is a number of

previous work with a mostly practical focus [1–4,7] , which are very

valuable in terms of domain knowledge and engineering effort, but

lack otherwise theoretical foundations and rigorous verification. On

1 While sampling preserves information pertaining to the same flow , however

in case of fault or anomaly, dependencies between protocols necessitates that all

flows for the host experiencing performance disruption are observed, which per-

flow sampling cannot guarantee.

the other hand, prior analytical work exists that is cast on solid

theoretic basis [5,6] , whose validation is however either simplistic

(e.g., simulations) or lacks ground truth (e.g., PlanetLab).

In this work, of which a preliminary version appeared at [8] , we

take the best of both worlds, and make the following main contri-

butions:

• we propose a practical and general framework for network

troubleshooting with an open source implementation;

• we provide simple yet instructive models of the expected fault

detection probability, that we contrast with experimental re-

sults;

• we use an experimental approach where we emulate controlled

network conditions with Mininet [9] and perform a thorough

calibration of the emulation setup – an often neglected albeit

mandatory task;

• sharing the same reproducibility spirit of Mininet, we further

make all our source code available for the scientific community

at [10,11] .

Aside our models, algorithm and its open-source software im-

plementation –which are interesting per se– we believe that the

rigor of our experimental evaluation is another crucial contribu-

tion of this paper, which is structured as follows. We first de-

scribe the problem we address from a networking viewpoint, and

introduce two use-cases where our approach can be applied, that

mainly differ in the amount of topological knowledge that the

root-cause algorithm has at its disposal (Section 2). We then in-

troduce a more formal system model, and phrase more rigorously

the above problems, proposing two simple yet insightful analyt-

ical models of the expected troubleshooting performance under

randomized selection, as well at its degradation with respect to a

strategic selection (Section 3). We next describe our generic trou-

bleshooting algorithm that, depending on the amount of available

information, can be formalized as a clustering vs. classification prob-

lem (Section 4). The scenario of our controlled experimental eval-

uation is discussed next, carefully calibrating tools for delay and

bandwidth emulation and measurement (Section 5). We report re-

sults of a thorough Mininet emulation campaign, investigating sev-

eral important system and scenario parameters, contrasting exper-

imental vs. modelings results (Section 6), and discuss practical as-

pects that a full-blown troubleshooting framework needs to take

into account (Section 7). Finally, we cast our work in the context of

related effort (Section 8) and summarize our main lessons learned

and contributions (Section 9).

2. Network scenario

We describe the network scenarii we address in this work with

the help of Fig. 1 . Specifically, the picture describes two scenarii,

where we assume troubleshooting software to be deployed in the

user home, and more precisely in the user terminals. In the left-

most case, users are connected as an overlay over the Internet,

of which they hardly have any topological information (due to its

large scale and temporal variability). In the rightmost case, users

belong to the same ISP, whose topological information is smaller

in scale, varying at a slower pace, and possibly available (at least

to some extent, as described in what follows). Additionally, in the

latter case, troubleshooting software can be deployed in the home

gateway, or in special network locations managed by the ISPs,

complementing tools deployed in the user terminals.

2.1. The status quo

Currently, troubleshooting is not only complex due to the huge

diversity of network apparatus, but even considering a single ISP

network, by the existence of multiple “ownership” domains. While

Please cite this article as: F. Espinet et al., Framework, models and controlled experiments for network troubleshooting, Computer Net-

works (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.001

http://dx.doi.org/10.1016/j.comnet.2016.06.001

Download English Version:

https://daneshyari.com/en/article/4954926

Download Persian Version:

https://daneshyari.com/article/4954926

Daneshyari.com

https://daneshyari.com/en/article/4954926
https://daneshyari.com/article/4954926
https://daneshyari.com

