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a b s t r a c t 

This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors 

maximizing the accuracy in τ -quantile of most anomalous samples. Such an approach better reflects the 

needs in the security domain in which subsequent analysis of alarms is costly and can be done only 

on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real 

network data using sets of anomaly detectors of two existing intrusion detection systems shows that the 

proposed method not only outperforms prior art, it is also more robust to noise in training data labels, 

which is another important feature for deployment in practice. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Increasing numbers of attacks against computing infrastructure 

and the critical importance of the infrastructure for enterprises 

drives the need to deploy progressively more sophisticated defense 

solutions to protect network assets. An essential component of the 

defense are Intrusion Detection Systems (IDS) [1] searching for evi- 

dence of ongoing malicious activities (network attacks) in network 

traffic crossing the defense perimeter. 

Many intrusion detection systems are implemented as ensem- 

bles of relatively simple, yet heterogeneous detectors [2,3] , where 

some of them can be specialized to particular types of intrusions, 

whereas others can be general anomaly detectors capable of de- 

tecting previously unseen attacks at the expense of higher false 

alarm rates. Such a setup has multiple advantages, including faster 

processing of the data stream, lower complexity of the detectors, 

and simpler inclusion of domain knowledge into the system. The 

main drawback is that combining outputs of individual detectors 

is a non-trivial problem. Although a vast prior art on the problem 

exists [4–6] , we believe that peculiarities of the security domain, 

namely a highly imbalanced ratio of non-alarm and alarm samples 

in the data, lack of accurately labeled datasets, and the need of 

extremely low false positive rates, call for a tailored solution. 

The rationale behind the above specifics is that from the user 

perspective each raised alarm needs to be thoroughly investigated, 

which is expensive and can be done only for a small number of 

them. Hence reporting high numbers of false positives renders any 
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intrusion detection system useless (recall that most of the samples 

are legitimate). Note that using a supervised method to learn the 

combination may bring the expense of lower generalization, but 

according to our experience completely unsupervised approaches 

rarely have false positive rate low enough to be usable in prac- 

tice. Moreover, anomaly detectors and their features are usually se- 

lected based on the experience of the designer, which is a kind of 

proxy for labels and surely not guaranteed to be complete. 

Obtaining labeled data in security domains and in network in- 

trusion detection especially can be difficult, time consuming, and 

expensive. Besides, labeled data frequently contains errors in labels 

of different sorts, for example some alerts might be missed and la- 

beled as legitimate samples, or even worse, all samples of alerts of 

certain types might be missed and labeled as legitimate. 

The above concerns motivated the main goals and contributions 

of this paper, which are a method of finding a convex combina- 

tion of outputs of a fixed set of anomaly detectors maximizing the 

number of true alarms in τ -fraction of most anomalous connec- 

tions (samples) 1 and an experimental study of the effect of dif- 

ferent types of label noise in the training data on the accuracy of 

combinations obtained by different methods to better understand 

their advantages and drawbacks. Conducted experiments revealed 

that the proposed method is not only better than the state of the 

art, but also more robust with respect to various kinds of noise in 

labels we can expect in intrusion detection domains. 

If the proposed method requires labeled data, one can ask why 

not use them to train a classifier and sidestep the use of anomaly 

1 Since the experimental evaluation is performed with network intrusion detec- 

tion systems, the terms sample and connection are used interchangeably. 
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detectors? The most important reason to favor anomaly detec- 

tors is that network traffic discussed in this paper is very non- 

stationary and anomaly detectors are good at coping with this as- 

pect, as they can constantly update their models (see [7–9] for a 

review). 

This paper is organized as follows: The next section for- 

mally defines the problem and presents the proposed solution. 

Section 3 reviews related work and algorithms that we evaluate 

in the experimental section. The experimental Section 4 compares 

the proposed solution with existing methods using sets of anomaly 

detectors from two different network intrusion detection systems 

operating on two different data sources. 

2. Proposed method 

Prior art in combining detectors and anomaly detectors in par- 

ticular is vast [4,10] , nevertheless we feel that security domains 

requires a tailored solution because of its prominent requirement 

of extremely low false positive rate. We assume that the network 

operator observers connections (samples) from an unknown distri- 

bution P o = πP a + (1 − π) P b with P a / P b being distributions of ma- 

licious/background samples and π ∈ [0, 1]. The network opera- 

tor uses set of m anomaly detectors on samples H m 

= { h k : X �→ 

[0 , 1] } m 

k =1 
(w.l.o.g. it is assumed that zero means the sample is le- 

gitimate and one means the sample is malicious) and wishes to 

have a convex combination of anomaly detectors α = (α1 , . . . , αm 

) 

that would maximize the number of alarms in top τ quantile of 

the distribution of the combined anomaly scores. For purposes of 

this paper it is safe to assume that each connection (sample) is 

described by m -dimensional vector (an output of m anomaly de- 

tectors), which implies that distributions P o , P a , and P b are defined 

on the m -dimensional Euclidean space.The requirements on detec- 

tors having their image in the interval [0, 1] and learning a convex 

combination instead of a linear one are to improve interpretability 

of the results as discussed in [11] , but can be dropped. The same 

work also presents a general approach to scale the output of any 

anomaly detector to the interval [0, 1] reviewed in Appendix A . 

With respect to the above, networks operator’s goal can be 

written as 

arg min 

α∈ R m 
R (H α) = E x ∼P b 

[
1 (αT h (x ) ≥ q α,τ ) 

]
︸ ︷︷ ︸ 

R fp (H α ) 

+ E x ∼P a 

[
1 (αT h (x ) < q α,τ ) 

]
︸ ︷︷ ︸ 

R fn (H α ) 

, (1) 

subject to 

H α(x ) = 

m ∑ 

k =1 

αk h k (x ) = αT h (x ) , 

1 

� α = 1 , 

αi ≥ 0 , ∀ i ∈ { 1 , . . . , m } , 

(2) 

where the first term in (1) is the false alarm rate, the second term 

is the false negative rate, and finally q α, τ is a τ -quantile of ob- 

served distribution of ensemble’s output { αT h ( x )| x ∈ P o }. The min- 

imized term (1) captures the accuracy of a particular convex com- 

bination in top τ -quantile of its distribution, which is the goal. 

In theory it would be sufficient if (1) minimizes either only the 

false positive rate R fp or only the false negative rate R fn , because 

each of them together with constraints (2) implies minimization of 

the other. But including both terms increases the robustness with 

respect to noise on labels, since the error and its gradient are es- 

timated from larger number of samples implying their better esti- 

mates. This is demonstrated in Appendix B , where the combination 

of anomaly detectors was found by optimizing either only false 

positive rate or only false negative rate under constraints (2) . The 

experiments have confirmed that optimizing the proposed (1) is 

indeed more robust to error in labels, which are almost inevitable 

in security domains. In the rest of this section we show, how to 

find a good solution in practice using adaptation of the method of 

Boyd et al. [12] . 

First, the true loss function (1) cannot be used in practice, since 

the true probability distributions P a and P b are not known. There- 

fore the expectations are replaced by their empirical estimates cal- 

culated from some labeled data used for learning the weight vector 

α. Below the S = S a ∪ S b denotes the set of available samples with 

S b being the set of background (legitimate) samples and S a the set 

of malicious samples. The empirical estimate of (1) is therefore 

ˆ R (H α) = 

1 

|S b | 
∑ 

x ∈S b 
1 
[
αT h (x ) ≥ ˆ q α,τ

]
+ 

1 

|S a | 
∑ 

x ∈S a 
1 
[
αT h (x ) < 

ˆ q α,τ

]
, 

(3) 

where ˆ q α,τ is an empirical estimate of the true quantile q α, τ de- 

fined as 

ˆ q α,τ = arg max 
ω 

1 

|S| 
∑ 

x ∈S 

[
1 (αT h (x ) ≤ ω) 

]
≤ τ. (4) 

Since the empirical loss function (3) is neither convex nor smooth, 

finding the optimal solution is an NP-complete problem. A usual 

approach is to replace indicator function 1 with a convex surro- 

gate, for example an exponential used in this work. 2 This substitu- 

tion leads to the following optimization problem 

arg min 

α

1 

|S b | 
∑ 

x ∈S b 
exp 

(
αT h (x ) − ˆ q α,τ

)

+ 

1 

|S a | 
∑ 

x ∈S a 
exp 

(
ˆ q α,τ − αT h (x ) 

)
(5) 

subject to 1 

� α = 1 , 

αi ≥ 0 , ∀ i ∈ { 1 , . . . , l} , 
ˆ q α,τ is a τ -quantile defined in (4) . 

where the optimized term (further denoted as ˆ R exp (H α) ) is an up- 

per bound of the empirical loss function 

ˆ R (H α) defined in Eq. (3) . 

Nevertheless the last problem is still hard to solve, as it is 

not convex. Boyd et al. [12] showed how to find a good solu- 

tion in polynomial time using series of convex problems. How- 

ever his algorithm does not guarantee finding the global mini- 

mum, and the computational complexity prevents it from being 

used on problems with millions of samples. We therefore pro- 

pose to solve (5) by a simple gradient algorithm summarized in 

Algorithm 1 , which albeit not reaching the global minimum per- 

forms well, according to our experiments. In each step the current 

solution αk is updated by subtracting a small multiple of the gradi- 

ent of (5) , which is decreasing in each step to ensure convergence. 

The αk is then truncated to satisfy the constraints, and finally 

the estimate of the quantile ˆ q α,τ is updated. The algorithm may 

find sub-optimal solutions but the experiments in Section 4 show 

that the solutions found are in most of the cases better than the 

ones of the state-of-the-art methods. Additionally, detailed discus- 

sion about the differences between the solution found by Boyd 

et al. and the one found by the proposed algorithm can be found 

in Appendix C . 

The combination of detectors found by the above algorithm is 

optimized with respect to the known malware, by which we under- 

stand the malware whose samples are present in the training set 

2 The chosen convex surrogate does not have a significant impact on the solution 

and can be replaced by the reader’s favorite choice, e.g. logistic, hinge, truncated 

square, etc. 
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