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a b s t r a c t

Feedforward neural networks have been extensively used to approximate complex nonlinear mappings
directly from the input samples. However, their traditional learning algorithms are usually much slower
than required. In this work, two hidden-feature-space ridge regression methods HFSR and centered-ELM
are first proposed for feedforward networks. As the special kernel methods, the important characteristics
of both HFSR and centered-ELM are that rigorous Mercer’s condition for kernel functions is not required
and that they can inherently be used to propagate the prominent advantages of ELM into MLFN. Except
for randomly assigned weights adopted in both ELM and HFSR, HFSR also exploits another randomness,
i.e., randomly selected examplars from the training set for kernel activation functions. Through forward
layer-by-layer data transformation, we can extend HFSR and Centered-ELM to MLFN. Accordingly, as the
unified framework for HFSR and Centered-ELM, the least learning machine (LLM) is proposed for both
SLFN and MLFN with a single or multiple outputs. LLM actually gives a new learning method for MLFN
with keeping the same virtues of ELM only for SLFN, i.e., only the parameters in the last hidden layer
require being adjusted, all the parameters in other hidden layers can be randomly assigned, and LLM is
also much faster than BP for MLFN in training the sample sets. The experimental results clearly indicate
the power of LLM on its application in nonlinear regression modeling.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, feedforward neural networks have been exten-
sively used for nonlinear regression modeling. Its widespread
popularity in regression modeling is mainly due to their strong
ability to approximate complex nonlinear mappings directly from
the input samples. From a mathematical viewpoint, existing
works about the approximation capability of feedforward neural
networks can be categorized into two types: universal approxi-
mation on compact input sets and approximation of a finite set
of samples. Theoretical results about the universal approximation
of feedforward neural networks have been obtained by Hornik and
Lesino, see [28,29]. In real-world applications, since feedforward
neural networks are trained on a finite set of samples, much more
endeavors should be taken for the approximation capability of the
second type. Typically, gradient descent based learning algorithms
like BP [1–5] of feedforward neural networks have been developed
and extensively applied in the last decades. When these learning
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algorithms are used, all the parameters of feedforward neural net-
work need to be adjusted in a backward way and thus there exists
the dependence relationship between different layers of parame-
ters in the network. Due to iterative learning steps, these learning
algorithms generally converge very slowly and even to local min-
ima. On the other hand, cross-validation and/or early stopping are
sometimes adopted to circumvent the over-fitting phenomena.

In order to overcome these shortcomings of the existing learning
algorithms, Huang et al. demonstrated and proved that the tradi-
tional iterative techniques are not required in adjusting parameters
of SLFNs at all. Based on the universal approximation capability of
SLFNs with random hidden nodes, Huang et al. proposed a sim-
ple and efficient learning method referred to as extreme learning
machine (ELM) [1–14,17–21]. They proved that the input weights
and the hidden layer biases can be randomly assigned if the activa-
tion function in the hidden layer is infinitely differentiable. Once the
input weights and the hidden layer biases are randomly assigned,
SLFN can be considered as a linear system and the output weights
of SLFN can be analytically solved by using the simple generalized
inverse operation of the hidden layer output matrix. With its easy
implementation, ELM can tend to reach both the smallest train-
ing error and the smallest norm of weights and thus provide good
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generalization performance at extremely fast learning speed, for
example, thousands of times faster than BP in many applications
[5].

Up to now, many variants of ELM have been developed. Huang
et al. [2,10,11,33] gave an intensive survey on ELM and its variants,
especially on batch learning mode of ELM [4,5,32], fully complex
ELM [12], online sequential ELM [3], incremental ELM [2,10,11], and
ensemble of ELM [8,31]. As stated by Huang [5], however, ELM at
its present form can only be applied to SLFNs. For many real-world
applications, a multiple hidden layer feedforward neural network
is more suitable for nonlinear regression modeling since it can
approximate large number of samples with less hidden nodes than
SLFN can [34].

Although extreme learning machine is able to learn thousands
of times faster than conventional popular learning algorithms for
SLFNs, developing a fast learning method for MLFNs is still an open
problem. In this paper, this problem is well investigated by build-
ing the link between extreme learning machine (ELM) and the
variants of ridge regression. Two variants of ridge regression, i.e.,
the hidden-feature-space ridge regression HFSR and centered ridge
regression Centered-ELM, for both SLFN and MLFN are first pro-
posed. As the special kernel methods, the virtues of both HFSR and
Centered-ELM exist in that rigorous Mercer’s condition for kernel
functions is not required and that it plays a bridging role in naturally
propagating the prominent advantages of ELM into MLFN by using
randomly assigned parameters and randomly selected samples for
kernel activation functions. Through constructing the transformed
data set from the training dataset in a forward layer-by-layer way,
we can easily extend HFSR and Centered-ELM to MLFN. Accord-
ingly, as the unified framework for HFSR and Centered-ELM, the
least learning machine (LLM) is proposed for both SLFN and MLFN
with a single or multiple outputs. LLM keeps the same virtues of
ELM only for SLFN, i.e., only the parameters in the last hidden
layer require being adjusted, all the parameters in other hidden
layers can be randomly assigned, and LLM is much faster than BP
in training the sample sets. The experimental results on regression
datasets clearly indicate the power of LLM on nonlinear regression
modeling.

It should be worth pointing out that the objective of this paper
does not pursue for the performance advantage of LLM over ELM.
Our contribution exists in two aspects: (1) Through LLM, we can
extend ELM to MLFN with keeping the same virtues of ELM only
for SLFN; (2) LLM indeed gives a new forward encoding learn-
ing way rather than a backward gradient-descent learning way
in the widely used learning algorithm BP. It views the behavior
of MLFN between the last hidden layer and the input layer as the
successive encoding procedure for the input data in a difficult-to-
understand way. To large extent, this new understanding can also
help us answer why MLFN behaves like a black box.

The remainder of this paper is organized as follows. In Section
2, we briefly review ELM for SLFN. In Section 3, we first propose
the hidden-feature-space ridge regression HFSR and Centered-ELM,
and then build the link between ELM and them for SLFN. Finally,
we give the least learning machine LLM as the unified framework
of HFSR and Centered-ELM for SLFN and MLFN with a single or
multiple outputs. In Section 4, we report the obtained experimental
results about Centered-ELM for SLFN and LLM for MLFN on artificial
or benchmarking datasets. Section 5 concludes the paper.

2. ELM for SLFN

In this section, we give a brief review of the extreme learning
machine for a single hidden layer feedforward neural network.
For easy interpretation and derivation hereafter and without loss
of generality, we first consider a single hidden layer feedforward

Extreme learning machine ELM.

Given the sample set D = {( xj , tj)| xj ∈ Rn , tj ∈ R, j = 1, 2, . . ., N}, the infinitely
differential activation function g( x) and the hidden node number Ñ of SLFN
with a single output.
Step1: Randomly assign the weight vector and the bias wi, bi, i = 1, 2, . . .Ñ
Step2: Compute the hidden layer output matrix H
Step3: Compute the output weight vector of SLFN, i.e., ˆ̌ = H†T , where T = [t1,
t2, . . . tN]T .

neural network (SLFN for brevity) with a single output here. Given
N arbitrary distinct samples ( xj, tj), xj = [xj1, xj2, ..., xjn]T ∈ Rn, tj ∈ R,
j = 1, 2, ......, N, SLFN with Ñ hidden nodes and the activation function
g( x) and a single output can be mathematically modeled as

Ñ∑
i=1

ˇigi(xj) =
Ñ∑

i=1

ˇig(wT
i xj + bi) = Oj j = 1, 2, . . ., N (1)

where wi = [wi1, wi2, . . ., win]T is the weight vector connecting
the ith hidden node and the input nodes, ˇ = [ˇ1, ˇ2, . . ., ˇÑ]T is
the weight vector connecting all the hidden nodes and the output
node, bi is the threshold of the ith hidden node, and wT

i
xj denotes

the inner product of wi and xj.
We desire that the above SLFN with a single output can approx-

imate these N samples with zero error, that is to say,

N∑
j=1

||Oj − tj||2 = 0, (2)

i.e.
Ñ∑

i=1

ˇig(wT
i xj + bi) = tj, j = 1, 2, . . ., N

The above N equations can be compactly written as the following
linear system

Hˇ = T (3)

where H(w1, w2, ..., wÑ , b1, b2, ..., bÑ, x1, x2, ..., xN)

=

⎡
⎢⎢⎣

g(wT
1x1 + b1) . . . g(wT

Ñ
x1 + bÑ)

... . . .
...

g(wT
1xN + b1) . . . g(wT

Ñ
xN + bÑ)

⎤
⎥⎥⎦

N×Ñ

(4)

ˇ =

⎡
⎢⎢⎢⎣

ˇ1

ˇ2

...

ˇÑ

⎤
⎥⎥⎥⎦

Ñ×1

T =

⎡
⎢⎢⎢⎣

t1

t2

...

tN

⎤
⎥⎥⎥⎦

N×1

(5)

where H is called the hidden layer output matrix of SLFN, whose
ith column is the ith hidden node output with respect to the inputs
x1, x2, . . ., xN.

According to Theorem 2.1 and Theorem 2.2 in [5], for the linear
system in Eq. (4), its unique solution, i.e., the smallest norm least
squares solution ˆ̌ can be computed as follows:

ˆ̌ = H†T (6)

where H† is the Moore-penrose generalized inverse of the matrix H.
Accordingly, Huang et al. proposed the following extreme learning
machine ELM [5].
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