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Abstract

Software fault prediction models are used to predict faultymodules at the very early stage of software development lifecycle.
Predicting fault proneness using source code metrics is an area that has attracted several researchers’ attention. Theperformance of
a model to assess fault proneness depends on the source code metrics which are considered as the input for the model. In this work,
we have proposed a framework to validate the source code metrics and identify a suitable set of source code metrics with the aim
to reduce irrelevant features and improve the performance of the fault prediction model. Initially, we applied a t-testanalysis and
univariate logistic regression analysis to each source code metric to evaluate their potential for predicting fault proneness. Next,
we performed a correlation analysis and multivariate linear regression stepwise forward selection to find the right setof source
code metrics for fault prediction. The obtained set of source code metrics are considered as the input to develop a fault prediction
model using a neural network with five different training algorithms and three different ensemble methods. The effectiveness of
the developed fault prediction models are evaluated using aproposed cost evaluation framework. We performed experiments on
fifty six Open Source Java projects. The experimental results reveal that the model developed by considering the selected set of
source code metrics using the suggested source code metricsvalidation framework as the input achieves better results compared
to all other metrics. The experimental results also demonstrate that the fault prediction model is best suitable for projects with
faulty classes less than the threshold value depending on fault identification efficiency (low- 48.89%, median- 39.26%, and high-
27.86%).
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1. INTRODUCTION

Most software companies intend to apply object-oriented (OO) technology for building modern software systems
due to its effective design features such as enhancing code re-use and reducing fragility, which enable faster product
development. OO Paradigm also assists in optimal characterization (e.g., abstraction, encapsulation, inheritance,and
polymorphism) of the software system compared to other paradigms. Along with these design strategies, one of
the major objectives of a software companies is to estimate and improve the quality of software; in general. They
further adopt certain processes, such as deployment of bug-tracking systems, code reviewing, proper testing to ensure
software quality, and reduce faults in a system. However, ensuring a system to be entirely fault-free is not practically

1



Download English Version:

https://daneshyari.com/en/article/4954983

Download Persian Version:

https://daneshyari.com/article/4954983

Daneshyari.com

https://daneshyari.com/en/article/4954983
https://daneshyari.com/article/4954983
https://daneshyari.com

