
Author’s Accepted Manuscript

An Empirical Analysis of the Effectiveness of
Software Metrics and Fault Prediction Model for
Identifying Faulty Classes

Lov Kumar, Sanjay Misra, Santanu Ku. Rath

PII: S0920-5489(16)30088-5
DOI: http://dx.doi.org/10.1016/j.csi.2017.02.003
Reference: CSI3201

To appear in: Computer Standards & Interfaces

Received date: 20 September 2016
Revised date: 27 December 2016
Accepted date: 10 February 2017

Cite this article as: Lov Kumar, Sanjay Misra and Santanu Ku. Rath, An
Empirical Analysis of the Effectiveness of Software Metrics and Fault Prediction
Model for Identifying Faulty Classes, Computer Standards & Interfaces,
http://dx.doi.org/10.1016/j.csi.2017.02.003

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com

http://www.elsevier.com
http://dx.doi.org/10.1016/j.csi.2017.02.003
http://dx.doi.org/10.1016/j.csi.2017.02.003


Procedia Computer Science 00 (2017) 1–40

Procedia
Computer
Science

An Empirical Analysis of the Effectiveness of Software Metrics and
Fault Prediction Model for Identifying Faulty Classes

Lov Kumara, Sanjay Misrab, Santanu Ku. Rathc

aDept. CSE, National Institute of Technology , Rourkela, India
lovkumar505@gmail.com

bAtilim University, Ankara, Turkey
ssopam@gmail.com

cDept. CSE, National Institute of Technology , Rourkela, India
skrath@nitrkl.ac.in

Abstract

Software fault prediction models are used to predict faultymodules at the very early stage of software development lifecycle.
Predicting fault proneness using source code metrics is an area that has attracted several researchers’ attention. Theperformance of
a model to assess fault proneness depends on the source code metrics which are considered as the input for the model. In this work,
we have proposed a framework to validate the source code metrics and identify a suitable set of source code metrics with the aim
to reduce irrelevant features and improve the performance of the fault prediction model. Initially, we applied a t-testanalysis and
univariate logistic regression analysis to each source code metric to evaluate their potential for predicting fault proneness. Next,
we performed a correlation analysis and multivariate linear regression stepwise forward selection to find the right setof source
code metrics for fault prediction. The obtained set of source code metrics are considered as the input to develop a fault prediction
model using a neural network with five different training algorithms and three different ensemble methods. The effectiveness of
the developed fault prediction models are evaluated using aproposed cost evaluation framework. We performed experiments on
fifty six Open Source Java projects. The experimental results reveal that the model developed by considering the selected set of
source code metrics using the suggested source code metricsvalidation framework as the input achieves better results compared
to all other metrics. The experimental results also demonstrate that the fault prediction model is best suitable for projects with
faulty classes less than the threshold value depending on fault identification efficiency (low- 48.89%, median- 39.26%, and high-
27.86%).

c© 2011 Published by Elsevier Ltd.

Keywords: Feature selection techniques, Artificial neural network, Ensemble method, Source code metrics, Cost analysis
framework.

1. INTRODUCTION

Most software companies intend to apply object-oriented (OO) technology for building modern software systems
due to its effective design features such as enhancing code re-use and reducing fragility, which enable faster product
development. OO Paradigm also assists in optimal characterization (e.g., abstraction, encapsulation, inheritance,and
polymorphism) of the software system compared to other paradigms. Along with these design strategies, one of
the major objectives of a software companies is to estimate and improve the quality of software; in general. They
further adopt certain processes, such as deployment of bug-tracking systems, code reviewing, proper testing to ensure
software quality, and reduce faults in a system. However, ensuring a system to be entirely fault-free is not practically

1



Download English Version:

https://daneshyari.com/en/article/4954983

Download Persian Version:

https://daneshyari.com/article/4954983

Daneshyari.com

https://daneshyari.com/en/article/4954983
https://daneshyari.com/article/4954983
https://daneshyari.com

