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a  b  s  t  r  a  c  t

This  paper  proposes  a self-splitting  fuzzy  classifier  with  support  vector  learning  in expanded  high-order
consequent  space  (SFC-SVHC)  for classification  accuracy  improvement.  The  SFC-SVHC  expands  the  rule-
mapped  consequent  space  of a first-order  Takagi-Sugeno  (TS)-type  fuzzy  system  by including  high-order
terms  to  enhance  the rule  discrimination  capability.  A  novel  structure  and  parameter  learning  approach
is  proposed  to construct  the  SFC-SVHC.  For  structure  learning,  a  variance-based  self-splitting  clustering
(VSSC) algorithm  is used  to  determine  distributions  of the  fuzzy  sets in  the input  space.  There  are no  rules
in the  SFC-SVHC  initially.  The  VSSC  algorithm  generates  a new  cluster  by  splitting  an  existing  cluster  into
two  according  to  a predefined  cluster-variance  criterion.  The  SFC-SVHC  uses  trigonometric  functions
to expand  the  rule-mapped  first-order  consequent  space  to  a  higher-dimensional  space.  For  parameter
optimization  in the  expanded  rule-mapped  consequent  space,  a  support  vector  machine  is  employed
to  endow  the  SFC-SVHC  with  high  generalization  ability.  Experimental  results  on  several  classification
benchmark  problems  show  that  the  SFC-SVHC  achieves  good  classification  results  with  a  small  number  of
rules.  Comparisons  with  different  classifiers  demonstrate  the  superiority  of  the  SFC-SVHC  in  classification
accuracy.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Many classification models have been proposed for pattern
classification using numerical data. Examples of the classification
models are neural networks (NNs) [1,2], fuzzy classifiers (FCs) [3],
and statistical models [4,5], such as a mixture of Gaussian classi-
fier [4] and support vector machines (SVMs) [5]. FCs are based on
fuzzy if-then classification rules. Neural networks and evolution-
ary computation approaches are characterized with optimization
ability and have been applied to solve different optimization prob-
lems [6–10]. These approaches have also been applied to automate
the design of classification rules using numerical data [11–20]. One
popular approach is to bring the learning ability of neural networks
into a fuzzy system, and the model designed is usually called a
fuzzy neural network (FNN) or a neural fuzzy system [11–15].
Another popular approach is to use the optimization ability of
genetic algorithms (GAs) for fuzzy rule generation [16–20]. The NN-
and GA-based approaches generate fuzzy rules based on empiri-
cal risk minimization, which does not account for small structural
risk. The generalization performance may  be poor when the FC is
over-trained.
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In contrast to the NN- and GA-based design approaches, a rela-
tively new learning method, the support vector machine (SVM),
has been proposed based on the principle of structural risk
minimization [5]. Several studies on introducing SVMs into fuzzy-
classification-rule generation have been proposed to improve the
generalization performance of an FC [21–25]. This paper proposes a
self-splitting fuzzy rule-based classifier with support vector learn-
ing in expanded high-order consequent space (SFC-SVHC). Based
on the self-splitting clustering algorithm in [25], the antecedent
parameters in the SFC-SVHC are determined using a variance-based
self-splitting clustering (VSSC) algorithm. The SFC-SVHC differs
from the NN, GA, and SVM-based FCs above in rule form and con-
sequent parameter learning. That is, contributions of the SFC-SVHC
are twofold. First, FCs typically use zero- or first-order TS-type fuzzy
rules [11–25], where the consequent of a fuzzy rule is a linear deci-
sion function and may  restrict the rule discrimination capability.
For regression problems, the use of different nonlinear functions in
the consequent of a fuzzy rule for regression performance improve-
ment has been recently proposed in [26,27]. This motivates the
new idea of expanding the entire rule-mapped consequent space
of a first-order TS-type fuzzy classifier, which is used in the SFC-
SVHC. Different from the rule forms in previous FCs [11–25], the
SFC-SVHC expands the entire rule-mapped consequent space of a
first-order TS-type fuzzy system via trigonometric function trans-
formations. The expanded rule-mapped consequent (ERMC) space
can be regarded as the inclusion of high-order function terms for
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discrimination capability improvement. Second, the SFC-SVHC uses
a linear SVM for consequent parameter optimization in the ERMC
space. The cost function used in the optimization considers not only
training error but also separation margin. The objective of using
a linear SVM is to endow the SFC-SVHC with high generalization
ability.

The rest of this paper is organized as follows. Section 2 presents
surveys on design of FCs. Section 3 introduces the SFC-SVHC struc-
ture. Section 4 describes the SFC-SVHC structure learning using the
VSSC algorithm. Section 5 introduces SFC-SVHC parameter learn-
ing using a linear SVM. Section 6 demonstrates the SFC-SVHC
classification performance by applying it to several benchmark
classification problems. This section also compares the perfor-
mance of the SFC-SVHC with those of different classifiers. Section
7 presents discussion. Finally, Section 8 presents conclusions.

2. Literature survey

This section presents surveys of different data-driven FCs using
NNs, GAs, and statistical learning. NN-based FCs are typically
designed based on structure and parameter learning [11–15]. The
neural fuzzy classifier in [11] uses k-means [28] for antecedent
parameter initialization. The neural fuzzy classifier in [12] starts
with a large rule base and a learning algorithm is used to prune
the rules. The use of fuzzy C-means (FCM) [29] to determine
the initial antecedent parameters is suggested in [12]. For the
two clustering-based approaches in [11,20], the FC performance
depends on the random distributions of the initial cluster centers.
The neural fuzzy classifiers in [13,15] use rule-firing strength as
a rule-generation criterion for automatic generation of the rules
from training data. The maximizing-discriminability-based self-
organizing fuzzy network (MDSOFN) in [14] also uses the same
rule generation approach as in [13,15]. The characteristic of the
MDSOFN is that the consequent parameters are mapped to a
linear-discriminant-analysis space to improve the classification
discriminability. Parameters in these neural fuzzy classifiers are all
tuned using the gradient descent algorithm with the objective of
training error minimization.

GA-based FCs use GAs to optimize the structure and parame-
ters in an FC. Several GA-based FCs have been proposed, such as
a structural learning algorithm in a vague environment (SLAVE)
[16], a fuzzy hybrid genetics-based machine learning (FH-GBML)
[17], and a steady-state genetic algorithm for extracting fuzzy clas-
sification rules from data (SGERD) [18]. In the SLAVE, an iterative
learning algorithm using GA is applied to find the number of rules
and the parameters in rules. The FH-GBML uses the hybridization of
Michigan and Pittsburgh approaches to optimize an FC. The SGERD
uses a new method to extract a compact set of readable fuzzy rules
from numerical data in much lower computational efforts than
the SLAVE and FH-GBML. The performance of these GA-based FCs
depends on the assignment of the initial rule base for selection.
Many learning coefficients (more than five) in these GA-based FCs
have to be properly assigned in advance for good classification per-
formance. In addition, different runs generate different results due
to the stochastic learning property of GAs.

For statistical learning of FCs, the application of a statistical log-
itboost algorithm to the design of an FC (called LogitBoost) was
proposed in [30]. For statistical SVM-based FCs, a positive defi-
nite fuzzy classifier (PDFC) was proposed in [21], where a support
vector (SV) generates a fuzzy rule. Because the number of SVs in
an SVM is usually very large, especially for complex classifica-
tion problems, the number of rules in a PDFC is equivalently large.
The support-vector-based fuzzy neural network (SVFNN) proposed
in [22] also builds initial rules from SVs. Then, a learning algo-
rithm is used to remove irrelevant fuzzy rules. However, this rule

reduction approach does not maintain the generalization ability
and thereby degrades the performance of the original classifica-
tion model. A fuzzy system learned through fuzzy clustering and
SVM (FS-FCSVM) was  proposed in [23], where zero-order Takagi-
Sugeno (TS)-type fuzzy rules were used. A self-organizing TS-type
fuzzy network with support vector learning (SOTFN-SV) was  pro-
posed in [24], where first-order TS-type fuzzy rules were used. As
in [13,15], these two  FCs generate rules based on the rule firing
strength of an input sample instead of SVs to achieve a small model
size. This kind of structure learning approach generates a new rule
and assigns its antecedent part parameters (i.e., center and width
of a fuzzy set) according to the location of a single training sample,
which does not consider input data distributions around a rule.
The VSSC algorithm used in SFC-SVHC determines the antecedent
part parameters according to the input data distributions around a
rule.

3. SFC-SVHC structure

3.1. SFC-SVHC structure and functions

The SFC-SVHC is based on functional expansion of the ERMC
space in a first-order TS-type fuzzy system. Each rule in a first-order
TS-type fuzzy system is of the following form:

Rule i: IF x1 is Ai1 and x2 is Ai2· · ·and xn is Ain, then

ŷ = hi0 +
n∑

j=1

hijxj (1)

where x1, . . .,  xn are inputs, Aij is a fuzzy set, and hij is a real number.
Fig. 1 shows the SFC-SVHC structure, which has a total of six layers.
Detailed mathematical functions of each layer are introduced layer
by layer as follows.

Layer 1 (input layer): Each node in this layer corresponds to one
input variable. The node first scales a real input variable to the range
[−1,1] and then transmits the scaled value to the next layer. The
training data is represented by a labeled set S with

S = {(�x1, y1), (�x2, y2), . . .,  (�xN, yN)}, (2)

where �xk ∈ R
n and yk ∈ {+1, − 1}.

Layer 2 (fuzzification layer): Each node in this layer corresponds
to a fuzzy set Aij and computes the degree to which an input value
belongs to it. Fuzzy set Aij is employed with the following Gaussian
membership function:

Mij(xj) = exp

{
− (xj − mij)

2

di
2

}
(3)

where mij and di denote the center and width of the fuzzy set,
respectively. Eq. (3) shows all fuzzy sets in rule i share the same
width di. The SFC-SVHC uses a VSSC algorithm to automatically
determine the values of mij and di, details of which are described
in Section 4. The number of fuzzy sets in each input variable xi is
equal to the number of fuzzy rules r. Therefore, this layer has a total
of nr nodes.

Layer 3 (rule layer): A node in this layer represents one fuzzy
rule and performs antecedent matching of a rule. The number of
nodes in this layer is equal to the number of rules r. Each node per-
forms a t-norm operation on inputs from layer 2 using the algebraic
product operation to obtain a firing strength �i(�x). Thus, given an
input data set �x  = [x1, x2, . . .,  xn], the firing strength �i(�x)of rule i



Download English Version:

https://daneshyari.com/en/article/495513

Download Persian Version:

https://daneshyari.com/article/495513

Daneshyari.com

https://daneshyari.com/en/article/495513
https://daneshyari.com/article/495513
https://daneshyari.com

