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This paper proposes a self-splitting fuzzy classifier with support vector learning in expanded high-order
consequent space (SFC-SVHC) for classification accuracy improvement. The SFC-SVHC expands the rule-
mapped consequent space of a first-order Takagi-Sugeno (TS)-type fuzzy system by including high-order
terms to enhance the rule discrimination capability. A novel structure and parameter learning approach
is proposed to construct the SFC-SVHC. For structure learning, a variance-based self-splitting clustering
(VSSC) algorithm is used to determine distributions of the fuzzy sets in the input space. There are no rules
in the SFC-SVHC initially. The VSSC algorithm generates a new cluster by splitting an existing cluster into
two according to a predefined cluster-variance criterion. The SFC-SVHC uses trigonometric functions
to expand the rule-mapped first-order consequent space to a higher-dimensional space. For parameter
optimization in the expanded rule-mapped consequent space, a support vector machine is employed
to endow the SFC-SVHC with high generalization ability. Experimental results on several classification
benchmark problems show that the SFC-SVHC achieves good classification results with a small number of
rules. Comparisons with different classifiers demonstrate the superiority of the SFC-SVHC in classification
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1. Introduction

Many classification models have been proposed for pattern
classification using numerical data. Examples of the classification
models are neural networks (NNs) [1,2], fuzzy classifiers (FCs) [3],
and statistical models [4,5], such as a mixture of Gaussian classi-
fier [4] and support vector machines (SVMs) [5]. FCs are based on
fuzzy if-then classification rules. Neural networks and evolution-
ary computation approaches are characterized with optimization
ability and have been applied to solve different optimization prob-
lems [6-10]. These approaches have also been applied to automate
the design of classification rules using numerical data [11-20]. One
popular approach is to bring the learning ability of neural networks
into a fuzzy system, and the model designed is usually called a
fuzzy neural network (FNN) or a neural fuzzy system [11-15].
Another popular approach is to use the optimization ability of
genetic algorithms (GAs) for fuzzy rule generation [ 16-20]. The NN-
and GA-based approaches generate fuzzy rules based on empiri-
cal risk minimization, which does not account for small structural
risk. The generalization performance may be poor when the FC is
over-trained.
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In contrast to the NN- and GA-based design approaches, a rela-
tively new learning method, the support vector machine (SVM),
has been proposed based on the principle of structural risk
minimization [5]. Several studies on introducing SVMs into fuzzy-
classification-rule generation have been proposed to improve the
generalization performance of an FC [21-25]. This paper proposes a
self-splitting fuzzy rule-based classifier with support vector learn-
ing in expanded high-order consequent space (SFC-SVHC). Based
on the self-splitting clustering algorithm in [25], the antecedent
parameters in the SFC-SVHC are determined using a variance-based
self-splitting clustering (VSSC) algorithm. The SFC-SVHC differs
from the NN, GA, and SVM-based FCs above in rule form and con-
sequent parameter learning. That is, contributions of the SFC-SVHC
are twofold. First, FCs typically use zero- or first-order TS-type fuzzy
rules [11-25], where the consequent of a fuzzy rule is a linear deci-
sion function and may restrict the rule discrimination capability.
For regression problems, the use of different nonlinear functions in
the consequent of a fuzzy rule for regression performance improve-
ment has been recently proposed in [26,27]. This motivates the
new idea of expanding the entire rule-mapped consequent space
of a first-order TS-type fuzzy classifier, which is used in the SFC-
SVHC. Different from the rule forms in previous FCs [11-25], the
SFC-SVHC expands the entire rule-mapped consequent space of a
first-order TS-type fuzzy system via trigonometric function trans-
formations. The expanded rule-mapped consequent (ERMC) space
can be regarded as the inclusion of high-order function terms for
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discrimination capability improvement. Second, the SFC-SVHC uses
a linear SVM for consequent parameter optimization in the ERMC
space. The cost function used in the optimization considers not only
training error but also separation margin. The objective of using
a linear SVM is to endow the SFC-SVHC with high generalization
ability.

The rest of this paper is organized as follows. Section 2 presents
surveys on design of FCs. Section 3 introduces the SFC-SVHC struc-
ture. Section 4 describes the SFC-SVHC structure learning using the
VSSC algorithm. Section 5 introduces SFC-SVHC parameter learn-
ing using a linear SVM. Section 6 demonstrates the SFC-SVHC
classification performance by applying it to several benchmark
classification problems. This section also compares the perfor-
mance of the SFC-SVHC with those of different classifiers. Section
7 presents discussion. Finally, Section 8 presents conclusions.

2. Literature survey

This section presents surveys of different data-driven FCs using
NNs, GAs, and statistical learning. NN-based FCs are typically
designed based on structure and parameter learning [11-15]. The
neural fuzzy classifier in [11] uses k-means [28] for antecedent
parameter initialization. The neural fuzzy classifier in [12] starts
with a large rule base and a learning algorithm is used to prune
the rules. The use of fuzzy C-means (FCM) [29] to determine
the initial antecedent parameters is suggested in [12]. For the
two clustering-based approaches in [11,20], the FC performance
depends on the random distributions of the initial cluster centers.
The neural fuzzy classifiers in [13,15] use rule-firing strength as
a rule-generation criterion for automatic generation of the rules
from training data. The maximizing-discriminability-based self-
organizing fuzzy network (MDSOFN) in [14] also uses the same
rule generation approach as in [13,15]. The characteristic of the
MDSOFN is that the consequent parameters are mapped to a
linear-discriminant-analysis space to improve the classification
discriminability. Parameters in these neural fuzzy classifiers are all
tuned using the gradient descent algorithm with the objective of
training error minimization.

GA-based FCs use GAs to optimize the structure and parame-
ters in an FC. Several GA-based FCs have been proposed, such as
a structural learning algorithm in a vague environment (SLAVE)
[16], a fuzzy hybrid genetics-based machine learning (FH-GBML)
[17], and a steady-state genetic algorithm for extracting fuzzy clas-
sification rules from data (SGERD) [18]. In the SLAVE, an iterative
learning algorithm using GA is applied to find the number of rules
and the parameters in rules. The FH-GBML uses the hybridization of
Michigan and Pittsburgh approaches to optimize an FC. The SGERD
uses a new method to extract a compact set of readable fuzzy rules
from numerical data in much lower computational efforts than
the SLAVE and FH-GBML. The performance of these GA-based FCs
depends on the assignment of the initial rule base for selection.
Many learning coefficients (more than five) in these GA-based FCs
have to be properly assigned in advance for good classification per-
formance. In addition, different runs generate different results due
to the stochastic learning property of GAs.

For statistical learning of FCs, the application of a statistical log-
itboost algorithm to the design of an FC (called LogitBoost) was
proposed in [30]. For statistical SVM-based FCs, a positive defi-
nite fuzzy classifier (PDFC) was proposed in [21], where a support
vector (SV) generates a fuzzy rule. Because the number of SVs in
an SVM is usually very large, especially for complex classifica-
tion problems, the number of rules in a PDFC is equivalently large.
The support-vector-based fuzzy neural network (SVENN) proposed
in [22] also builds initial rules from SVs. Then, a learning algo-
rithm is used to remove irrelevant fuzzy rules. However, this rule

reduction approach does not maintain the generalization ability
and thereby degrades the performance of the original classifica-
tion model. A fuzzy system learned through fuzzy clustering and
SVM (FS-FCSVM) was proposed in [23], where zero-order Takagi-
Sugeno (TS)-type fuzzy rules were used. A self-organizing TS-type
fuzzy network with support vector learning (SOTFN-SV) was pro-
posed in [24], where first-order TS-type fuzzy rules were used. As
in [13,15], these two FCs generate rules based on the rule firing
strength of an input sample instead of SVs to achieve a small model
size. This kind of structure learning approach generates a new rule
and assigns its antecedent part parameters (i.e., center and width
of a fuzzy set) according to the location of a single training sample,
which does not consider input data distributions around a rule.
The VSSC algorithm used in SFC-SVHC determines the antecedent
part parameters according to the input data distributions around a
rule.

3. SFC-SVHC structure
3.1. SFC-SVHC structure and functions

The SFC-SVHC is based on functional expansion of the ERMC
spacein afirst-order TS-type fuzzy system. Each rule in a first-order
TS-type fuzzy system is of the following form:

Rule i: IF xq is Aj; and x5 is Aj>- - -and x;, is A, then

n
P=ho+ ) hyx, (1)
j=1

where x1, .. ., X, are inputs, Aj; is a fuzzy set, and h;; is a real number.
Fig. 1 shows the SFC-SVHC structure, which has a total of six layers.
Detailed mathematical functions of each layer are introduced layer
by layer as follows.

Layer 1 (input layer): Each node in this layer corresponds to one
input variable. The node first scales a real input variable to the range
[-1,1] and then transmits the scaled value to the next layer. The
training data is represented by a labeled set S with

S:{(ilsyl)s()?ZMVZ)’~"7(§vaN)}» (2)

where x, € R" and yj, € {+1, — 1}.

Layer 2 (fuzzification layer): Each node in this layer corresponds
to a fuzzy set A;; and computes the degree to which an input value
belongs to it. Fuzzy set A;; is employed with the following Gaussian
membership function:

Mij(x;) = exp {—("’d';”)} 3)

where mj; and d; denote the center and width of the fuzzy set,
respectively. Eq. (3) shows all fuzzy sets in rule i share the same
width d;. The SFC-SVHC uses a VSSC algorithm to automatically
determine the values of m;; and d;, details of which are described
in Section 4. The number of fuzzy sets in each input variable x; is
equal to the number of fuzzy rules r. Therefore, this layer has a total
of nr nodes.

Layer 3 (rule layer): A node in this layer represents one fuzzy
rule and performs antecedent matching of a rule. The number of
nodes in this layer is equal to the number of rules r. Each node per-
forms a t-norm operation on inputs from layer 2 using the algebraic
product operation to obtain a firing strength p;(x). Thus, given an
input data set X = [xq, X2, ..., X |, the firing strength w;(X)of rule i
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