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a b s t r a c t 

This paper proposes a new unified systolic array architecture to perform multiplication and 

inversion operations in GF (2 m ) based on the bit serial multiplication algorithm and the pre- 

viously modified extended Euclidean algorithm. This architecture is explored by applying 

a regular technique to the multiplication and inversion algorithms. It has lower area and 

power complexities as well as it achieves a moderate speed. Also, it has a simple structure 

with processing elements have local communication with each other. The implementation 

results of the proposed design and the comparable published designs show that the pro- 

posed design saves more area (ranging from 18.8% to 23.0%) and saves more energy (rang- 

ing from 18.2% to 47.0%) over the compared efficient designs. This makes it more suitable 

for applications that impose more constraints on area and power consumption. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In resource-constrained devices, the application of public key cryptography (PKC) is limited due to the limitations of 

Power consumption. Since both Elliptic-curve cryptography (ECC) and Hyper Elliptic Curve Cryptography (HECC) algorithms 

have the merit of giving the same level of security using smaller key sizes comparing to other PKC algorithms, the ECC and 

HECC algorithms can be used in applications that have more constraints on power and timing [1] . There are recently more 

ECC hardware implementations reported in the literature that meets the power and timing constraints of these applications 

[2–4] . The essential operation used in both ECC and HECC based protocols is the scalar multiplication operation. This oper- 

ation is performed as a sequence of point addition and point doubling in the case of ECC-based protocols and performed 

as a sequence of divisor addition and divisor doubling in the case of HECC-based protocols. Both point/divisor operations 

are carried out as a sequence of field addition, field multiplication, and field inversion. Compared to the field addition, the 

implementations of field multiplication and inversion are most expensive in both ECC and HECC cryptography. Accelerating 

these operations using software implementations is based on using a pre-computed look-up tables that lead to increasing 

the memory overhead. Also, the insufficient amount of available memory in resource-constrained applications limits the 

field size and leads to different performance across the architectures. On the other hand, accelerating these computations 
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using hardware accelerators does not put any restrictions on the memory or field sizes and achieves a better performance 

than software implementations. Moreover, the significant reduction in computation time in hardware-based solutions leads 

to a significant saving in energy over the software-based solutions. Thus, in this work, we concentrate on the hardware- 

based solutions by presenting a unified hardware structure to perform multiplication and inversion operations. Sharing the 

data-path between the two operations saves more area resources and power than the case of using separate data-path for 

each operation and thus makes the design more suitable for constrained implementations of cryptographic primitives in 

resource-constrained embedded applications. 

There are various algorithms and systolic architectures proposed for modular multiplication in GF (2 m ) [5,6] . The multi- 

plier bit-serial algorithms can be classified into two categories, the most significant bit (MSB) first algorithms and the least 

significant bit (LSB) first algorithms. It is important to indicate that LSB-first bit-serial multiplier has shorter critical path 

than MSB-first bit-serial multipliers [5] . Also, these algorithms are iterative algorithms that make it easy to be implemented 

using systolic array approaches. Systolic arrays are also used to implement inversion in GF(2 m ) [7–10] . 

A unified bit-serial multiplication/division structure was proposed in [11] based on the Stein’s algorithm [12] . This unified 

bit-serial structure reduces the area by 27% compared to the structures consisting of one separated divider and multiplier. 

Nonetheless, the integration of multiplier and divider increases the critical path delay and this leads to slowing down both 

operations. Also, a unified bit-serial multiplication/inversion structure was proposed in [7] based on the modified extended 

Euclidean-based algorithm [8] . 

In this paper, we propose a unified systolic architecture that is suitable for resource-constrained devices to perform mul- 

tiplication and inversion operations in GF (2 m ) based on the LSB-first bit-serial multiplication algorithm and the previously 

modified extended Euclidean algorithm [7,8] . This unified architecture is composed of a one-dimensional array of logic cells 

and has area complexity of O( m ). Since the inversion and multiplication operations share the same data path, they save 

much more area and power than architectures with separate inverters and multipliers as well as they have the same critical 

path delay as the stand alone inverter. The unified architecture is explored by applying a regular technique proposed by the 

third author [13–17] to the multiplication and inversion algorithms. 

The paper is organized as follows: Section 2 gives a brief discussion about the LSB-First bit serial multiplication algo- 

rithm and the previously modified extended Euclidean-based inversion algorithm over GF(2 m ) and the conversion of these 

algorithms into the bit-level form. Section 3 gives a brief discussion of the proposed methodology employed to explore the 

unified systolic array architecture. Section 4 explains the proposed design complexity and compares it to the previous work. 

At the end, Section 5 provides the conclusions of this work. 

2. Finite field multiplication and inversion 

This section provides a brief discussion about the LSB-first bit-serial multiplication and the previously modified extended 

Euclidean-based inversion algorithms over GF(2 m ) and the conversion of these algorithms into the bit-level form. 

2.1. Finite field multiplication 

A finite field over GF(2 m ) could be defined using the irreducible polynomial: 

Q(x ) = x m + q m −1 x 
m −1 + · · · + q i x 

i + · · · q 2 x 
2 + q 1 x + 1 (1) 

where q i ∈ GF (2) for 0 < i < m . 

Field elements A and B in GF (2 m ) can be represented by the polynomial: 

A (x ) = 

m −1 ∑ 

i =0 

a i x i (2) 

B (x ) = 

m −1 ∑ 

i =0 

b i x i (3) 

where a i and b i ∈ GF (2) for 0 ≤ i < m . 

Multiplication in GF (2 m ) is defined as polynomial multiplication of A(x) and B(x) modulo Q(x). The product T can be 

computed using the LSB-first multiplication algorithm shown in Algorithm 1 [5] . This algorithm computes two intermediate 

polynomials, T ( x ) and S ( x ) that are stored in m -bit registers. Here we use T i and S i to denote the values of T and S after 

i th iteration. b i represents the i th coefficient of the multiplier B . In the initial step of the algorithm, the coefficients of the 

irreducible polynomial Q ( x ) and the coefficients of polynomial A ( x ) are assigned to the variables R 0 and S 0 , respectively. Also, 

the variable T 0 is assigned zero values. 

Algorithm 2 shows the conversion of Algorithm 1 into bit-level form. In this algorithm, the terms s i 
j 

and t i 
j 

represent the 

j th bit of S and T at iteration i , respectively. In each iteration of the outer for loop, control bit c 1 i is set to the value of the 

MSB of S i −1 , s i −1 
m −1 

. 
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