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a  b  s  t r  a  c  t

Most  of the  recent  proposed  particle  swarm  optimization  (PSO)  algorithms  do  not  offer  the  alternative
learning  strategies  when  the particles  fail to  improve  their  fitness  during  the  searching  process.  Motivated
by  this  fact,  we  improve  the  cutting  edge  teaching–learning-based  optimization  (TLBO)  algorithm  and
adapt  the  enhanced  framework  into  the  PSO,  thereby  develop  a teaching  and  peer-learning  PSO  (TPLPSO)
algorithm.  To be  specific,  the  TPLPSO  adopts  two learning  phases,  namely  the  teaching  and  peer-learning
phases.  The  particle  firstly  enters  into  the teaching  phase  and updates  its velocity  based  on  its  historical
best  and  the global  best  information.  Particle  that  fails  to  improve  its fitness  in  the  teaching  phase  then
enters  into  the peer-learning  phase,  where  an  exemplar  is selected  as  the guidance  particle.  Additionally,
a  stagnation  prevention  strategy  (SPS)  is employed  to alleviate  the  premature  convergence  issue.  The
proposed  TPLPSO  is  extensively  evaluated  on 20 benchmark  problems  with  different  features,  as  well as
one  real-world  problem.  Experimental  results  reveal  that  the  TPLPSO  exhibits  competitive  performances
when  compared  with  ten  other PSO  variants  and seven  state-of-the-art  metaheuristic  search  algorithms.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Particle swarm optimization (PSO) algorithm is initially
introduced by Kennedy and Eberhart in 1995 [1], to emulate the col-
laborative behavior of bird flocking and fish schooling in searching
for foods [1–4]. In PSO, each individual (namely particle) repre-
sents the potential solution of the optimization problem, while the
location of food source is the global optimum solution. Being a
population-based metaheuristic search (MS) algorithm, PSO simul-
taneously evaluates many points in the search space. Besides
searching for the food independently and stochastically, each par-
ticle collaborates and shares information with each other, to ensure
all of them move toward the optimal solution of the problem and
eventually leads to the convergence [2,3]. Since the introduction
of the PSO, it becomes an overwhelming choice of optimization
technique due to its simplistic implementation and excellent per-
formance on various benchmark and engineering design problems
[4–9].

Despite having the competitive performance, PSO has some
undesirable dynamical properties that degrade its searching abil-
ity. One of the most important issues is the premature convergence,
where the particles tend to be trapped in the local optima solution,
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due to the rapid convergence and diversity loss of the swarm
[10]. Another issue is regarding the ability of PSO to balance the
exploration/exploitation search. Overemphasize of the exploration
prevents the swarm convergence, while too much exploitation
has high tendency to cause the premature convergence of swarm
[11].

Although extensive amounts of works [11–29] are reported to
address the aforementioned issues, most of the current existing
PSO variants do not provide the alternative learning strategies
to particles when they fail to update their fitness during the
searching process. This problem inevitably limits the algorithms’
searching capabilities. Recently, Rao et al. [30,31] proposed a
teaching–learning-based optimization (TLBO) algorithm, inspired
by the philosophy of teaching and learning. The process of TLBO is
divided into two parts, namely the teacher phase and the learner
phase, where the individuals can learn from the teacher and the
interaction of other individuals, respectively. Motivated by these
two facts, we propose a teaching and peer-learning PSO (TPLPSO).
To be specific, we improve the current existing TLBO framework
and adapt this enhanced framework into the PSO. Similar with
TLBO, the TPLPSO adapts two learning phase, namely the teach-
ing and peer-learning phases. Each particle first enters into the
teaching phase and updates its velocity according to its histor-
ical best and the global best information. Particle that fails to
improve its fitness in the teaching phases then enters into the
peer-learning phase, where an exemplar particle is selected as the
guide for the particle to search for a better solution. The roulette
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wheel selection technique is employed to ensure fitter particle has
higher probability to be selected as the exemplar, thereby provide a
more promising searching direction toward the global optimum. To
resolve the premature convergence issue, we employ a stagnation
prevention strategy (SPS) module that will be triggered when the
PSO swarm fails to improve the global best fitness in m successive
function evaluations (FEs).

The remainder of this paper is organized as follows. Section
2 briefly presents some related works. Section 3 details out the
methodologies of the TPLPSO. Section 4 provides the experimental
settings and results, respectively. Finally, Section 5 concludes the
work done.

2. Related works

In this section, we discuss the mechanism of the basic PSO. Next,
the state-of-art PSO variants are reviewed. For self-completeness
purpose, we also provide the brief description of TLBO.

2.1. Basic particle swarm optimization (PSO) algorithm

In the basic PSO, the PSO swarm consists of a group of par-
ticles with negligible mass and volume that roam through the
D-dimensional problem hyperspace. Each particle i represents a
potential solution of the problem and it is associated with two
vectors, namely the position vector Xi = [Xi1, Xi2, . . .,  XiD] and the
velocity vector Vi = [Vi1, Vi2, . . .,  ViD] to indicate its current state.
One salient feature of PSO that distinguishes it from other MS
algorithms is the capability of particle to remember its personal
best experience, that is, the best position that it ever achieves.
During the searching process, each particle of the population
stochastically adapts its trajectory through its personal best expe-
rience and the group best experience [1,2]. Specifically, the d-th
dimension of particle i’s velocity, Vi,d(t + 1) and position Xi,d(t + 1)
at (t + 1)-th iteration of the searching process are updated as
follows:

Vi,d(t + 1) = ωVi,d(t) + c1r1(Pi,d(t) − Xi,d(t)) + c2r2(Pg,d(t) − Xi,d(t))

(1)

Xi,d(t + 1) = Xi,d(t) + Vi,d(t + 1) (2)

where i = 1, 2, . . .,  S is the particle’s index; S is the population size;
Pi = [Pi1, Pi2, . . .,  PiD] represents the particle i’s personal best expe-
rience; Pg = [Pg1, Pg2, . . .,  PgD] is the group best experience found by
all of the particles so far; c1 and c2 are the acceleration coefficients
that control the influences of personal and group best experiences,
respectively; r1 and r2 are two random numbers that generated
with the uniform distribution in the range of [0,1]; and ω is the
inertia weight that is used to balance the global/local searches of
particles [11]. The implementation of basic PSO is illustrated in
Fig. 1.

2.2. State-of-the-art PSO variants

Substantial amount of researches are performed to improve
the PSO’s performance. Among these works, parameter adapta-
tion strategy has become one of the promising approaches. Shi
and Eberhart [11] proposed a PSO with linearly decreasing iner-
tia weight (PSO-LDIW) by introducing a parameter called inertia
weight ω into the basic PSO. Accordingly, the parameter ω is lin-
early decreased to balance the exploration/exploitation search of
PSO. Based on a thorough theoretical study on the convergence
properties of PSO swarm, Clerc and Kennedy [12] proposed a con-
striction factor � into basic PSO to prevent the swarm explosion,

thereby developed the Constricted PSO (CPSO). Ratneweera et al.
[15] proposed a time varying acceleration coefficient (TVAC) strat-
egy into PSO, where the acceleration coefficients of c1 and c2 are
decreased and increased linearly with time, to regulate the explo-
ration/exploitation behaviors of swarm. In [15], two variants of
PSO-TVAC, namely the PSO-TVAC with mutation (MPSO-TVAC) and
Self-Organizing Hierarchical PSO-TVAC (HPSO-TVAC) were devel-
oped. Tang et al. [23] proposed a Feedback Learning PSO with
quadratic inertia weight (FLPSO-QIW) by introducing a fitness feed-
back mechanism into the TVAC scheme. The particle’s fitness is
incorporated into the modified TVAC to adaptively determine the c1
and c2 values. By proposing an evolutionary state estimation (ESE)
module, Zhan et al. [21] developed an Adaptive PSO (APSO) that
is capable to identify the swarm’s evolutionary states. The outputs
of the ESE module are then used to adaptively adjust the particles’
ω, c1 and c2. Leu and Yeh [27] proposed a Grey PSO, by employing
the grey relational analysis to tune the particles’ ω, c1 and c2. Hsieh
et al. [19] developed an efficient population utilization strategy for
PSO (EPUS-PSO). Accordingly, a population manager is proposed to
adaptively adjust the population size according to the population’s
searching status.

Population topology is another crucial factor that determines
the PSO performance as it decides the information flow rate of the
best solution within the swarm [32,33]. In [32,33], different topolo-
gies with different connectivity, such as the fully connected, ring,
and wheel topologies, were studied. Carvalho and Bastos-Filho [17]
developed a clan topology according to the social behavior of clan.
In the Clan PSO, the PSO population is divided into several clans.
Each clan will first perform the search and the particle with best
fitness is selected as the clan leader. A conference is then performed
among the leaders to adjust their position. Bastos-Filho et al. [18]
proposed a Dynamic Clan PSO by employing a migration mech-
anism into the clan topology. This improvement allows particles
in one clan migrate to another clan. Meanwhile, Pontes et al. [22]
hybridized the concept of clan topology into the APSO [21] to pro-
duce the ClanAPSO. Based on the evolutionary state of each clan,
ClanAPSO enables different clans to employ different search opera-
tions. Parsopoulos and Vrahatis [14] proposed a Unified PSO (UPSO)
to balance the exploration/exploitation search. Mendes et al. [13]
advocated that each particle’s movement is influenced by all its
topological neighbors and thereby proposed the fully informed PSO
(FIPSO). Montes de Oca [20] integrated the concepts of time-varying
population topology, FIPSO’s velocity updating mechanism [13],
and decreasing ω [11], to develop the Frankenstein PSO (FPSO).
Initially, the particles in FPSO are connected with fully connected
topology. The topology connectively is then reduced over time with
certain pattern.

Another area of research is to explore the PSO’s learning strate-
gies. Liang et al. [16] proposed the Comprehensive Learning PSO
(CLPSO). Accordingly, each particle is allowed to learn from its or
other particle’s historical best position in each dimension, to ensure
a larger search space is explored. Wang et al. [24] proposed a CLPSO
variant by employing a generalized opposition-based learning to
the CLPSO. Motivated by a social phenomenon where multiple of
good exemplars assist the crowd to progress better, Huang et al.
[26] proposed an Example-based Learning PSO (ELPSO). Instead of
a single Pg particle, an example set of multiple global best particles
is employed to update the particles’ position in ELPSO. Noel [28]
hybridized the PSO with a gradient-based local search algorithm,
to combine the strengths of stochastic and deterministic optimiza-
tion schemes. Zhou et al. [25] introduced the Random Position PSO
(RPPSO) by proposing a probability P(�f). A random position is used
to guide the particle, if the randomly generated number is smaller
than P(�f). Jin et al. [29] advocated to update the particles’ veloc-
ities and positions in certain dimensions and thus proposed the
PSO with dimension selection methods. A total of three approaches,
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