
ARTICLE IN PRESS 

JID: CAEE [m3Gsc; June 15, 2016;10:26 ] 

Computers and Electrical Engineering 0 0 0 (2016) 1–21 

Contents lists available at ScienceDirect 

Computers and Electrical Engineering 

journal homepage: www.elsevier.com/locate/compeleceng 

Potential and methods for emb e dding dynamic offloading 

decisions into application code 

Gavin Vaz, Heinrich Riebler ∗, Tobias Kenter, Christian Plessl 

Department of Computer Science, Paderborn University, 33098 Paderborn, Germany 

a r t i c l e i n f o 

Article history: 

Received 10 June 2015 

Revised 28 April 2016 

Accepted 28 April 2016 

Available online xxx 

Keywords: 

Runtime system 

Runtime decision 

Hotspot offloading 

Convey HC-1 

LLVM 

SCEV 

a b s t r a c t 

A broad spectrum of applications can be accelerated by offloading computation intensive 

parts to reconfigurable hardware. However, to achieve speedups, the number of loop it- 

erations (trip count) needs to be sufficiently large to amortize offloading overheads. Trip 

counts are frequently not known at compile time, but only at runtime just before entering 

a loop. Therefore, we propose to generate code for both the CPU and the coprocessor, and 

defer the offloading decision to the application runtime. We demonstrate how a toolflow, 

based on the LLVM compiler framework, can automatically embed dynamic offloading de- 

cisions into the application code. We perform in-depth static and dynamic analysis of pop- 

ular benchmarks, which confirm the general potential of such an approach. We also pro- 

pose to optimize the offloading process by decoupling the runtime decision from the loop 

execution (decision slack). The feasibility of our approach is demonstrated by a toolflow 

that automatically identifies suitable data-parallel loops and generates code for the FPGA 

coprocessor of a Convey HC-1. We evaluate the integrated toolflow with representative 

loops executed for different input data sizes. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the rise of heterogeneous computing using accelerators in mobile and general-purpose systems and the advent 

of Field Programmable Gate Arrays (FPGAs) in the data center [1] , the question of optimal application partitioning across 

the HW/SW boundary is as important as ever. As FPGAs become increasingly accessible through techniques like high-level 

synthesis or overlay architectures, fast and automated yet accurate techniques are required to determine which parts of an 

application can benefit from being offloaded to an FPGA accelerator. Traditional methods have relied either on static code 

analysis or on profiling data to characterize suitable application hotspots. If the application’s behavior cannot be statically 

determined at compile time or if it is heavily input data or parameter dependent, partitioning decisions need to be taken 

heuristically, possibly leaving significant optimization potential on the table. 

Therefore we propose to defer the actual decision to offload a particular code section to an accelerator to program run- 

time, where dynamic information about the execution is available, for example, the loop trip count for data-dependent hot 

loops. We propose to automatically insert code that performs these runtime decisions into the application code. During a 

static partitioning process at compile time, code for both targets (CPU and FPGA accelerator) is generated. At runtime, be- 

fore some potentially acceleratable code section is entered, the amount of computation and the size of data to be worked 

∗ Corresponding author. 

E-mail addresses: gavin.vaz@uni-paderborn.de (G. Vaz), heinrich.riebler@uni-paderborn.de , heinrich.riebler@upb.de (H. Riebler), 

kenter@uni-paderborn.de (T. Kenter), christian.plessl@uni-paderborn.de (C. Plessl). 

http://dx.doi.org/10.1016/j.compeleceng.2016.04.021 

0045-7906/© 2016 Elsevier Ltd. All rights reserved. 

Please cite this article as: G. Vaz et al., Potential and methods for embedding dynamic offloading decisions into application 

code, Computers and Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.04.021 

http://dx.doi.org/10.1016/j.compeleceng.2016.04.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
mailto:gavin.vaz@uni-paderborn.de
mailto:heinrich.riebler@uni-paderborn.de
mailto:heinrich.riebler@upb.de
mailto:kenter@uni-paderborn.de
mailto:christian.plessl@uni-paderborn.de
http://dx.doi.org/10.1016/j.compeleceng.2016.04.021
http://dx.doi.org/10.1016/j.compeleceng.2016.04.021


2 G. Vaz et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–21 

ARTICLE IN PRESS 

JID: CAEE [m3Gsc; June 15, 2016;10:26 ] 

on can be determined in many cases and can be used for making better offloading decisions than static analysis only. For 

this purpose, we build a toolflow based on the LLVM compiler infrastructure [2] , which allows us to target all applications 

that can be compiled to, or are distributed in the LLVM intermediate representation (LLVM IR). 

In this work we investigate the possible benefits of offloading decisions at runtime in three connected experiments. 

First, we evaluate how often common compute workloads offer an opportunity for runtime decisions under the assump- 

tion that offloaded code typically corresponds to loops or loop nests. For this evaluation we let our LLVM based toolflow 

statically (offline) analyze the code of three real-world benchmark suites and determine which loops can be precisely char- 

acterized at runtime (RT), but not at compile time (CT). It turns out that this is the case for a considerable fraction of all 

detected loops. However, to have a reasonable fraction of runtime dependent loops gives us only a necessary precondition 

for the usefulness of our approach. A runtime depended loop serves only as a good offloading candidate if, in addition, the 

execution frequency is sufficiently large. Therefore we also present a dynamic (online) evaluation of the application behav- 

ior where we analyze the execution frequencies of the different types of loop (nests) in more detail. We show that of all 

the detected loops not only are a considerably fraction runtime dependent, but that many of those loops also impose large 

execution frequencies. We also evaluate the overheads that are inserted into the applications taking offloading decisions at 

runtime. 

Second, after showing the usefulness of runtime decisions for the offloading process we propose a new approach of 

rearranging or moving the decision point within the application. For a loop to be characterized as runtime decidable, all 

the information required to take a runtime decision needs to be available at least right before the beginning of the loop 

(nest). We show that for most real-world applications from various benchmark suites, this information is available much 

before its actual usage in the loop. Hence, the decision could be taken earlier and the possible coprocessor execution could 

be prepared in the timespan gained moving the decision up. We created an LLVM based toolflow which is able to detect 

and characterize these code movement opportunities. We present different cases where this information can be exploited 

to enhance the runtime decision and improve the offloading process. 

Third, we evaluate the benefit of runtime decisions with an actual toolflow targeting the reconfigurable Convey HC-1 

compute platform. The integrated toolflow can automatically identify loops suitable for vectorization and generate efficient 

code for the host CPU and a vector coprocessor implemented as an FPGA overlay. We have extended this toolflow to analyze 

for detected loops whether their dynamic offloading decision should be taken at runtime and insert the required decision 

into the application code. When offloading decisions are deferred to runtime, data movement between CPU and coprocessor 

also needs to be organized at runtime as well. Alongside our runtime decisions we generate code for proper data movement 

and again profit from analysis that uses runtime information to determine which amount of data needs to be transferred. 

We apply our toolflow to a set of different, runtime-dependent loops with different nesting structures and evaluate the 

performance for different data dimensions. Our results show that runtime decisions can improve the overall performance of 

the system as compared to always executing vectorizable code either on the CPU or the coprocessor. 

This paper extends our previous conference publication [3] with its static analysis of the potential of runtime decisions in 

real-world benchmarks by an in-depth dynamic analysis of these applications. We also propose for the first time the concept 

of decision slack and present a first static analysis of its potential. Finally, we provide additional details of our case-study 

and extend our coverage of related work. 

The remainder of this paper is structured as follows. In Section 2 we discuss related work, in particular other approaches 

of systems with offloading decisions at runtime and related work targeting the Convey HC-1. In Section 3 we present our 

approach of inserting the offloading decision right into the code of the application and show an analysis of common bench- 

mark suites and how widely applicable runtime decisions are. In Section 4 we introduce alternative insertion points for 

runtime decision and discuss our approach to prepone the decision to improve the offloading process. This new approach 

is evaluated in the same section with real-world applications. In Section 5 we present the integrated toolflow with runtime 

decisions and code generation for a reconfigurable coprocessor and describe the data migration strategy implemented for 

this platform. Then, we compare the performance of special aspects and the overall integrated toolflow in Section 6 , and 

finally draw a conclusion in Section 7 . 

2. Related work 

In this section, we describe related work for the topics covered in this paper. First, we present background information on 

static HW/SW partitioning and describe other effort s in building systems with dynamic HW/SW partitioning. Then we dis- 

cuss related research on data migration at runtime and complete this section with other research effort in characterization 

of common benchmark suites. 

2.1. Static HW/SW partitioning 

One important challenge in the acceleration of applications with the help of specialized hardware is to decide which 

parts of the application shall be executed in hardware. To tackle this HW/SW partitioning problem, researchers proposed 

exact methods and heuristics that can be used for automated partitioning toolflows. Apart from the design space exploration 

strategies, the methods also differ in the granularity of the partitioning objects that are considered. Depending on the target 

architecture, methods work at the level of functions, loops, basic blocks and even instructions. 

Please cite this article as: G. Vaz et al., Potential and methods for embedding dynamic offloading decisions into application 

code, Computers and Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.04.021 

http://dx.doi.org/10.1016/j.compeleceng.2016.04.021


Download English Version:

https://daneshyari.com/en/article/4955283

Download Persian Version:

https://daneshyari.com/article/4955283

Daneshyari.com

https://daneshyari.com/en/article/4955283
https://daneshyari.com/article/4955283
https://daneshyari.com

