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a b s t r a c t 

The article presents a state space approach to identify and extract poles and zeros in an RC 

circuit. The results obtained are shown to match with circuit simulation (WinSpice). A new 

procedure is also developed that allows construction of the state matrix A directly from 

the circuit inspections. This is proven to be a very efficient technique for identifying the 

state matrix A without going through a traditional nodal analysis. As shown, the matrix 

A is constructed by making specific measurements on the circuit itself, or by simulating 

solely the resistive circuit. Finally, a new method is presented, through which the zeros of 

a transfer function are first converted into poles and then the poles are extracted through 

the circuit eigenvalues. In addition, a new Modified Nodal Procedure (MNP) is presented 

in the Appendix that allows circuits with all types of independent and controlled sources. 

It shows how the presence of these sources are incorporated into the conductance matrix, 

providing a unified nodal (branch) solution to the circuit problem. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

accurately determining the response of an analog circuit to AC input signals with different frequencies has a long re- 

search history, in circuit theory. Conventional circuit simulators perform the task numerically by going into procedures that 

implement discrete (forward/backward) integration when dealing with storage elements such as capacitors, and inductors. 

In this technique the ordinary differential equations are first turned into algebraic equations that are representative of a 

resistive circuit in each step of the integration [1,2] , and the results are then obtained by going through an ordinary nodal 

analysis in each step. This method of discrete integration is shown to be accurate enough for short computational steps 

[3,4] , and it is relatively fast, depending on the integration steps. As stated in [3] the method works as follows: “the ac 

analysis computes a dc operating point and all of the necessary small signal parameters, then sweeps all ac sources through 

a set of frequencies, computing the ac small signal response at each of those frequencies.”

There are also other methods for determining the frequency responses of analog circuits that take closed form solution 

paths, such as symbolic approaches. These methods try to extract poles and zeros of a circuit transfer function by solving 

its denominator and nominator polynomials [5–7] . An alternative and well developed approach, however, is through circuit 

state equations, or rather circuit eigenvalues. This is a popular method that solves for circuit roots (poles and zeros) di- 

rectly using nodal representation of the circuit [8,9] . This study concentrates on this methodology. Here, the strength comes 

from the fact that each independent storage element holds its value (voltage for capacitors and currents for inductors) long 

enough to be labeled as a state. 
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Computationally, the eigenvalue approach uses the nodal admittance matrix to construct a state matrix A . Then by solving 

the characteristic equation Eq. (1) , the eigenvalues of the circuit, λi , for all i , are determined [10–15] . 

det (A − λI) = 0 (1) 

It is shown that QR and QZ algorithms offer more efficient techniques in computing the eigenvalues of a circuit or system 

[3,4] . 1 In addition, corresponding to each eigenvalue λi , Eq. (2) has at least one nontrivial solution for V i , which is an 

eigenvector of A . 

(A − λi I) V i = 0 (2) 

Haley [8] , for instance, proceeds with computation of poles of an RC circuit by separating conductance and capacitance 

matrices, G and C , in the nodal admittance equations, as in Eq. (3) . This separation of the storage elements from those non- 

storage elements helps to identify the circuit poles more easily, and makes it straightforward to follow a symbolic approach 

to identify the circuit poles. It is shown that the procedure to find the poles is computationally simplified when the matrix 

C becomes diagonal in Eq. (3) . 

(sC + G ) V = I (3) 

Hennig [5] , on the other hand, uses capacitors as circuit ports and computes the port resistances to find the time con- 

stants in RC circuits. From here the real axis poles can simply be estimated. Similar procedures are employed by Constan- 

tinescu, Nitescu, Iordache, and Dumitriu1 [10] , and also by Riaza and Tischendorf [12] , where they define tree branches for 

the circuit capacitors and links for the inductors. The procedures produce both C and L as diagonal matrices, although the 

analytical details and the execution steps are mostly left out. Guerra, Rodriguez-Garcia, and Fernandez [9] make a compre- 

hensive study on poles and zeros extraction using feedback to exchange pole and zeros. This is done to identify zeros. 

First, the traditional approach is reviewed in this presentation. This includes the identification and extraction of poles 

and zeros of a circuit transfer function using the eigenvalue technique. The procedure is independently developed here 

to a full extended, and the results are compared with those obtained through a circuit simulator (WinSpice) for different 

examples. Next, a new method, still based on the eigenvalue problem, is developed that allows the state matrix A to be 

constructed directly from the circuit inspections. This is proven to be a very efficient and fast technique for identifying 

the state matrix A without going into any nodal circuit analysis. As it turns out, implementing this method requires some 

specific measurements done on the circuit variables (voltages and currents), and these measurements are only done on the 

resistive circuit. Finally, a new method is presented, through which the zeros of the original circuit are first turned into 

poles in a newly formed circuit, and then those poles are subsequently identified through the eigenvalue procedure. 

To start with, a brief review of the traditional eigenvalue approach is presented for extracting the natural frequencies 

of RC circuits. The procedure can of course be extended to cover any active RLC circuit. The difference is that, in the latter 

case the inductances (as well as the mutual inductances) must be added to the storage elements of the circuit and count 

for new circuit states. In this situation both the capacitors, as the branches of a specified tree, and the inductances, as the 

tree links, are entered into the circuit analysis forming the state matrix A . However, due to the space limitation this portion 

of the analysis is not covered here. 

The material in this article is arranged as follows. A rather brief review of the eigenvalue technique is presented in 

Section 2 . This review starts with first specifying a circuit tree that contains all circuit capacitors as its branches. Then 

based on this tree a branch admittance matrix is constructed, which is subsequently contracted to generate a Reduced 

Branch Admittance Matrix (RBAM) for the circuit. Next, the RBAM is used to form the state matrix A , the solution of which 

results in identifying the eigenvalues, hence, the poles of the circuit. In Section 3 a new methodology in introduced that 

finds the state matrix A purely by inspection. The method is fast and avoids many computational steps including matrix 

inversion. Section 4 is devoted to finding the circuit zeros through eigenvalue technique. The section explains how zeros 

can be turned into poles through the use of Fixator Norator Pairs (FNP) and then extracted using state space methodology. 

Finally the conclusion is given in Section 5 . 

2. A review of eigenvalue procedure 

Consider a linear RC circuit N, and select a tree t c in N such that it contains all the circuit capacitors as tree branches. In 

case of a capacitor loop or a loop of capacitors plus some independent voltage sources, the loop is broken by applying one 

of the following procedures: 1) Apply the � to Y conversion to the loops, or 2) add a small resistor r c in series with one of 

the capacitors in the loop. In either case an extra node is added to N, which causes a capacitor link to become a capacitor 

branch of t c . The second method is adopted in this presentation because of its simplicity and accuracy. The problem with 

the first method is that, it creates a capacitor node 2 ; and a capacitor node (or cut set) creates a DC charge trap, or simply 

a pole at the origin, which is often destabilizing. In the second method, however, the location of the extra pole created can 

be arbitrary selected on the s-plane (typically on the real axis), typically quite far away from the rest of the circuit roots. In 

1 QR and QZ are eigenvalue algorithms that find a given state matrix A as a product of two matrices Q and R (or Z ,), where Q is an orthogonal matrix 

and R is an upper triangular matrix. 
2 A node that is connected to capacitors, only. 
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