
ARTICLE IN PRESS
JID: CAEE [m3Gsc;January 20, 2016;21:51]

Computers and Electrical Engineering 000 (2016) 1–10

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

A timer-based operating system for ZigBee sensor platforms �

Chia-Chi Chang∗, Chuan-Bi Lin

Department of Information and Communication Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan, R.O.C.

a r t i c l e i n f o

Article history:

Received 24 June 2015

Revised 24 November 2015

Accepted 26 November 2015

Available online xxx

Keywords:

Operating system

Event-driven

Timer-driven

Energy consumption

a b s t r a c t

In recent years, resource constrained hardware makes the operating system simplicity a

most crucial design criterion. The majority of research in such operating systems has fo-

cused on the reactive nature of an event-driven kernel. However, the event-based ker-

nel may result in the latency of processing events and erroneous energy profiling. Most

battery-driven wireless sensor nodes use the radio event to wake up sleeping nodes, but

the radio always consumes more energy than other components during the transmission

intervals. The contribution of this paper is that we present EXOS, a timer-driven operat-

ing system which can both process periodic events on time and obtain rapid responses to

external signals. The system kernel can be easily ported to any other memory-constrained

target platforms. EXOS is able to provide the detailed prediction of each component’s en-

ergy consumption during program execution. The evaluation has demonstrated that EXOS

can be practically integrated into wireless sensor networks.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The continuing improvements in IC fabrication processes and Micro-Electro-Mechanical Systems technologies have led

to many novel and fascinating applications in wireless sensor networks [1,2,3,4,5]. As system integration requirements in-

crease, so does demand for small, low-cost, ultra-low power, and greater noise immunity wireless platforms. The construct

of wireless sensor networks may be comprised of several thousands of the nodes. The nodes can ambitiously interface with

unfamiliar surroundings through MEMs-based sensors and then forward packets containing necessary information to the

neighboring nodes. The wireless sensor node commonly consists of the following components: an 8 or 16 bit microcon-

troller only has 4 K to 256 K bytes of on-chip program memory and 128 bytes to 10 K bytes of on-chip data memory, a

low-power RF transceiver, a great diversity of sensors, and a limited amount of power supply. From the hardware design

point of view, to cram everything into the smallest space as close as possible makes laying out a Printed-Circuit Board is

a crucial design. The wireless sensor platforms always combine digital sections with analog sections. Spurious noise or re-

flections from wireless communication may induce fake signals that can cause false events to occur, or even damage the

whole wireless system. From the software design point of view, resource constrained hardware makes the operating system

simplicity a most crucial design criterion. Not only can the OS kernel deal with various timing constraints imposed on the

rapid responses to external events, but it can save energy to extend the node lifetime [6]. When the OS kernel has no task

scheduled, the node may even halt the system clock completely until the MCU is required, at which point an external event

(such as the arrival of a RF packet) or an internal event (such as the overflow of a timer) reactivates the system clock. The

� Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. T-H Meen.
∗ Corresponding author. Tel.: +886-955-755-218.

E-mail address: ccchang@cyut.edu.tw, dyson0703@gmail.com (C.-C. Chang).

http://dx.doi.org/10.1016/j.compeleceng.2015.11.028

0045-7906/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article as: C.-C. Chang, C.-B. Lin, A timer-based operating system for ZigBee sensor platforms, Computers

and Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2015.11.028

http://dx.doi.org/10.1016/j.compeleceng.2015.11.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
mailto:ccchang@cyut.edu.tw
mailto:dyson0703@gmail.com
http://dx.doi.org/10.1016/j.compeleceng.2015.11.028
http://dx.doi.org/10.1016/j.compeleceng.2015.11.028


2 C.-C. Chang, C.-B. Lin / Computers and Electrical Engineering 000 (2016) 1–10

ARTICLE IN PRESS
JID: CAEE [m3Gsc;January 20, 2016;21:51]

node provides various power-save modes, each with a different level of power consumption and each requiring a different

period time from the sleeping state to the first instruction executed [7]. Interrupts are a hardware mechanism used to notify

the MCU that an event has taken place and need to process its service. It seems that event-driven Oss [8,9] can supply rapid

responses to events. Nevertheless, some inherent drawbacks of event-driven OSs (such as interrupt overload, stack overflow,

interrupt latency, and missed interrupt) will result in lack of accuracy, robustness and reliability [10,11]. As events manifest

only rarely, it is also difficult to track down a variety of software errors. Most battery-driven applications use the radio event

to invoke the sleeping node, but the radio transceiver always consumes a large amount of power during the transmission

intervals [12]. For extending the node lifetime, it is indispensable to turn off the radio transceiver when not in use. The

time synchronization protocol can use an asynchronous timer to wake up the sleeping node at regular intervals and then to

turn on the radio for transformation. When the node is in power-save mode, the MCU basically halts all generated clocks,

allowing operation of asynchronous timers only. The dedicated clock source is always from an external low-frequency crys-

tal. Not only can it effectively extend the node lifetime but it can reduce the source of electromagnetic interference. It is

essential that the OS kernel can possess periodic nature for deploying wireless sensor networks. The contribution of this

paper is that we have implemented EXOS, a timer-driven embedded operating system for resource-constrained platforms.

Contrary to the event-driven OS, the overflow of an asynchronous timer in EXOS is mainly used to divert the MCU from

the power-save mode or the execution of the current sporadic task so that it can deal with the periodic task scheduled.

Following are descriptions of some attractive features in EXOS.

Simplicity: For the limited code memory size, simplicity should be the primary design of the OS kernel. This can lead

to two challenges. The first challenge is how to possess both the minimal code footprint of the OS and rapid responses

to external events. EXOS removes unnecessary expensive services to acquire a tiny kernel which consists of a two-level

scheduler, a power-save module, and an optional error detector. The scheduler can handle both periodic tasks and sporadic

tasks. The second challenge is how to construct and debug a WSN application as readily as possible. All WSN applications

running on EXOS can be divided into dozens of tasks, and each task should be linked together. Periodic tasks are dispatched

on a regular basis between fixed time intervals. In contrast, sporadic tasks are activated by external signals or a change of

some relationship.

Portability: EXOS is implemented in the standard C programming language, which can easily interface their C code to

routines written in assembler. There are two occasions to call an assembly routine from the C program. First, the time-

critical code is needed to execute quickly and efficiently. Second, to cram the C code into a small amount of memory is

impossible. Typically, using in-line assembly with the C code can get the best of both worlds. The EXOS kernel is layered on

Hardware Abstraction Layer. Once the hardware abstract layer has been ported to the target’s MCU architecture, it can be

easily ported to any memory-constrained platforms.

Reactivity: Unlike pure polling, even-driven OSs always use interrupts to reduce the overhead of detecting events. That is

the reason why the event-driven OSs have rapid responses for external events. However, they may result in some inherent

problems: interrupt overload, stack overflow, interrupt latency, and missed interrupt. EXOS is similar to Pont’s system. Unlike

Pont’s system [13], the EXOS kernel does not limit the use of interrupts. In other words, EXOS is able to support both polling-

like and event-driven.

Logical Concurrency: Most OSs put their emphasis on concurrency to improve system performance [14]. In general, in-

terrupts are used to implement logical concurrency. The OSs use concurrency to represent logically parallel activities, even

though these scheduled tasks are processed by a single MCU. As events arrive simultaneously, so does demand for more

logically critical designs growth. However, a single MCU cannot execute two processes at the same time, even though inter-

rupts can provide rapid responses to deal with sporadic events. In EXOS, the tasks will be staggered carefully to represent

accuracy and logical concurrency. Thus, it can greatly reduce the OS overheads incurred by context-switching.

Predictability: Once sensor nodes are deployed in outdoor environments, it is nearly impossible to change batteries.

Shutting down unused modules in the sensor node can obtain long node and network lifetime. Inefficient power-critical

code blocks, like low-level communication and MAC protocols, may consume a large portion of the CPU processing time. It

is indispensible to quantitatively predict the actual energy consumption of sensor nodes and to optimize the power man-

agement intended for all layers of the system. However, event-driven OSs are difficult to evaluate the energy consumption

of specific code blocks due to interrupts with varying priorities. Erroneous energy consumption may result in the useless

performance analysis and even a whole network crash [15]. Making a deep and accurate energy analysis during execution is

inherent in the EXOS kernel. The energy profiling of EXOS can reveal which task or component consumes a large portion of

the CPU load.

The rest of this paper is organized as follows: First, we discuss some inherent drawbacks in the event-based OSs in

Section 2. Section 3 presents a detailed look at the EXOS system and demonstrates that EXOS is highly feasible for low-rate

WSNs. In the following section, our experiences running on EXOS lend support to the claim in the earlier section. Finally,

the paper is concluded in Section 5.

2. Related work

Polling is a simple programming style, which makes the MCU continuously detect whether the event takes place. It

is highly portable but operates at active mode at all times. If the application has multiple interrupt sources, polling will

not provide rapid responses for events. Interrupts are a hardware mechanism of diverting the MCU from the execution

Please cite this article as: C.-C. Chang, C.-B. Lin, A timer-based operating system for ZigBee sensor platforms, Computers

and Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2015.11.028

http://dx.doi.org/10.1016/j.compeleceng.2015.11.028


Download English Version:

https://daneshyari.com/en/article/4955328

Download Persian Version:

https://daneshyari.com/article/4955328

Daneshyari.com

https://daneshyari.com/en/article/4955328
https://daneshyari.com/article/4955328
https://daneshyari.com

