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a  b  s  t  r  a  c  t

Multi-objectivization  via  Segmentation  (MOS)  has been  shown  to  give  improved  results  over other
previous  multi-objectivization  approaches.  This  paper  explores  the  mechanisms  that  make  different  seg-
mentations  in MOS  successful  in the  context  of the Traveling  Salesman  Problem  (TSP). A variety  of  new
segmentation  methods  are  analyzed  and  theories  regarding  their  performance  are  presented.  Spatial  seg-
mentation  methods  are  compared  with  other  adaptive  and  static  decomposition  methods.  Insight  into
why previous  adaptive  methods  performed  well  is provided.  New  decomposition  methods  are proposed
and  several  of  these  methods  are  shown  to attain  better  performance  than  previously  known  meth-
ods  of decomposition.  The  convergence  of  various  degrees  of  multi-objectivization  is  examined  leading
to  a  new,  more  general  segmentation  algorithm,  Multi-Objectivization  via Progressive  Segmentation
(MOPS).  MOPS  combines  the single-objective  genetic  algorithm  with  multi-objectivization  in  a  general
form.  In a given  run  MOPS  can  progress  from  a more  traditional  single  objective  method  to  a  strong
multi-objectivization  method.  MOPS  attempts  to improve  the  ratio  of  fitness  improvements  to  fitness
decrements,  signal-to-noise  ratio  (SNR),  over  the  course  of  an  evolutionary  optimization  based  on  the
principle  that  often  fitness  improvements  are  generally  easier  to find  early  in the  run  rather  than  late  in
the run.  It is  shown  that  MOPS  provides  robust  performance  across  a variety  of  problem  instances  and
different computational  budgets.

Published  by Elsevier  B.V.

1. Introduction

Multi-objectivization is a technique for solving single objective
optimization problems. The technique reformulates the single
objective problem into a multiple objective problem and then
solves the reformulated problem using an Evolutionary Multi-
objective Optimization (EMO) method [1]. Multi-objectivization
is a relatively new optimization technique due in part to two
reasons. Firstly, EMO  methods are relatively recent and prior to
the introduction of EMO  methods in the late 1980s few efficient
techniques existed to simultaneously find many solutions on the
Pareto frontier. Secondly, and perhaps just as importantly, the size
of optimization problems studied has increased to a point where
multi-objectivization methods can be competitive. Small problems
are generally not complex enough to require multi-objectivization
techniques. Some research to date has provided weak
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evidence that larger problems benefit from more aggressive forms
of multi-objectivization [2–4]. Additional stronger evidence is
required.

Multi-objectivization techniques fall into two major categories
[5]. The addition of novel objectives is one major approach. Novel
objectives approaches have shown improved results over single
objective optimization with the addition of objectives such as
solution age [6], frame bar width [7], and the first derivative of
the objective function [8]. The second major category of multi-
objectivization is Multi-objectivization Via Decomposition (MVD).
MVD divides the objective function into component objectives and
then uses those objectives in the optimization process. MVD has
been most commonly used on fitness functions that have a sum-
of-parts property but has also been theorized as being useful in
sum-of-product fitness functions [2].

Previous works on MVD  have used two major approaches. The
first approach, helper-objectives, utilizes the main objective in con-
junction with additional decomposed objectives [2–4]. The second
approach, pure decomposition,  does not use the original prob-
lem’s main objective but instead only works on the decomposed
objectives [1,5,9,10]. Lochtefeld and Ciarallo [4] outlined several
principles governing multi-objectivization via helper-objectives.
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Several of these principles are general and likely apply to multi-
objectivization via pure decomposition. This paper studies the
general principles that govern helper-objectives using a pure-
decomposition method in order to determine the applicability of
the principles governing helper-objectives on pure-decomposition
approaches. These principles are studied in the context of the Trav-
eling Salesman Problem (TSP).

The remainder of this paper is structured as follows. The back-
ground section focuses on multi-objectivization research to date.
General principles of multi-objectivization are summarized. Fur-
ther the TSP is described and prior research studying the TSP using
multi-objectivization techniques is examined. The experiment sec-
tion contains three distinct experiments. The first two  experiments
focus on finding and improving possible decompositions for the
TSP by analysis of existing decompositions, proposed new decom-
positions, and empirical study of the performance of promising
decompositions. The third experiment introduces MOPS and eval-
uates its performance against methods with a static degree of
decomposition such as MOS. Finally, concluding remarks are pro-
vided that both summarize the work and recommend avenues for
further research.

2. Background

The TSP is a classic combinatorial optimization problem that
“is probably the most studied of NP-hard problems” [11]. The goal
of the optimization is to find good or optimal low-cost tours that
traverse a set of cities. A tour is a route that starts and ends at
the same city and travels through each city exactly once. Fre-
quently solutions for the TSP are defined by a permutation string
which determines the sequence in which cities are visited. Each
city appears in the string exactly once. TSPs have a multitude of
practical applications and have been used in the past to model and
solve problems related to applications in data clustering, drilling
circuit boards, genome sequencing, and delivery and pickup [11].
Methods to solve large TSPs include heuristics such as Genetic Algo-
rithms [12], Simulated Annealing (SA) [13], and tabu search [14],
and exact methods such as branch and bound [11] and dynamic
programming.

The remainder of this background section is composed of two
areas. The first section, multi-objectivization studies on the TSP,
summarizes previous work accomplished on the TSP. The sec-
ond section, principles of multi-objectivization, describes known
principles that apply to multi-objectivization techniques. For a
broader background on multi-objectivization the reader is referred
to [3,4].

2.1. Multi-objectivization studies with the TSP

Multi-objectivization has been studied with the TSP in at least
three independent efforts under the same thread of research.
Knowles et al. [1] examined the TSP using a multiple objective
hill climbing algorithm. Later, Jensen [2] applied the concepts of
helper-objectives to the TSP. Finally, Jahne et al. [10] studied the
TSP and proposed a new method called Multi-Objectivization via
Segmentation (MOS). These three works are discussed next.

Knowles et al. studied the TSP with multi-objectivization by
pure decomposition using the Pareto-Envelope based Selection
Algorithm (PESA) [15], a multi-objective hill climber. To turn the
main objective into multiple objectives, two random cities, cities A
and B, were selected. The decomposed objectives were the travel
cost of moving from city A to city B, and the travel cost of mov-
ing from city B to city A. Since the full tour consists of going from
city A, through some cities and on to city B, and then through
some other cities and back to city A, the decomposed objectives

ensured all costs associated with a full tour were considered. The
multi-objectivization method using PESA outperformed its single-
objective counterpart on six different TSPs ranging from 20 to 100
cities in size.

The Knowles et al. approach suffered from three weaknesses.
Firstly, decompositions could be degenerate if cities A and B were
close to each other. Secondly, and exasperating the first weakness,
only a single decomposition was used in a given run which made
the run heavily based on a single problem division. Lastly, identical
solutions could be incomparable in the Pareto sense if a tour were
reversed in two or more different solutions [2]. Identical, incompa-
rable solutions in the Pareto sense can result in inefficient tracking
of solutions by an EMO  algorithm.

Jensen [2] corrected these weaknesses by explicitly assigning
each city to two or more decomposed objectives. Jensen used the
main objective simultaneously in conjunction with the decom-
posed objectives via a concept called helper-objectives. Because
helper-objectives use the main objective simultaneously with the
decomposed objectives, the best solution found would survive
throughout the optimization. Since the objective function is based
on the cost of travel between cities, each helper-objective summed
the cost of incoming and outgoing links for its associated cities.
This type of decomposition sums the cost of each link twice since
links are shared between two cities. If two cities were adjacent in
the tour and assigned to the same helper-objective, the cost of the
links between the cities is added twice when calculating the objec-
tive value of the helper-objective. Similarly if adjacent cities are in
different helper-objectives, the cost of the link is added to the objec-
tive value of both helper-objectives. Cities were randomly assigned
to the different helper-objectives. To combat the possibility of a
single, poorly-chosen decomposition, multiple random decompo-
sitions were used. These decompositions were used sequentially
based on a random ordering. After a certain number of generations,
a new set of helper-objectives would be used by the optimization.
A more detailed description of helper-objectives is provided in [3].
Jensen studied 40 TSPs ranging from 99 to 2103 cities.

Jensen theorized that adaptive strategies using the decomposed
objectives could give additional improved results. An adaptive
strategy makes decisions about how the algorithm works based on
the evolution of the population. Jahne et al. used adaptive decom-
positions of the cities based upon different properties of the costs
of current links represented in the population [10]. The proposed
MOS  method uses pure decomposition, partitioning the cities into
two decomposed objectives based upon a single dividing point. This
dividing point is determined by examining a sample of individuals
in the population to determine the representative cost of links asso-
ciated with cities. Three different dividing points were considered.
For instance, one decomposition used Expected Value Of Distances
(EVOD) for each city to divide cities into two segments based upon
above average and below average EVODs. If the represented cost
of the links into and out of a city in the sample was greater than
the average EVOD for all cities in sample, the city was  assigned to
the first segment. Conversely, if the represented cost was lower
than the average EVOD in the sample, the city was assigned to the
other segment. Decompositions that used more than two  divisions
were not studied because empirical evidence gathered by Jensen [2]
on the Job Shop Scheduling Problem (JSSP) indicated the smallest
(most basic) decompositions were the most competitive.

EVOD uses the expected value of the distance scores represented
in a sample. A given distance score for a city is defined by summing
all of the represented distances into and out of that city for the indi-
viduals in the sample. Suppose we  need to calculate the distance
score for city  ̨ for a sample of the population defined by the set I
that contains � individuals. Let the function P(i, ˛) return the city
immediately preceding city  ̨ in solution i. Similarly, let the func-
tion S(i, ˛) return the city immediately following city  ̨ in solution
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