
A kernel stack protection model against
attacks from kernel execution units

Wangtong Liu *, Senlin Luo, Yu Liu, Limin Pan, Qamas Gul Khan Safi
Information System & Security and Countermeasures Experiments Center, Beijing Institute of Technology,
Beijing 100081, PR China

A R T I C L E I N F O

Article history:

Received 21 October 2016

Received in revised form 7

September 2017

Accepted 11 September 2017

Available online 20 September 2017

A B S T R A C T

Many defensive approaches have been proposed to protect the integrity of the operating

system kernel stack. However, some types of attacks, such as the “return-to-schedule” rootkit,

pose a serious threat to these approaches. In this paper, we present a kernel stack protec-

tion model to protect the integrity of the kernel stack. It adopts a synchronous design strategy

to bind the execution unit with its kernel stack using virtualization technology, and allows

the execution unit to write its own current kernel stack with legal kernel codes. To test the

model, we propose three kinds of potential attacks which extend the “return-to-schedule”

rootkit.The experimental results show that the prototype of the model can be effective against

all attack methods, and introduces a performance cost of only 2%. Therefore, it effectively

protects all types of data on the kernel stack with a small performance overhead.

© 2017 Elsevier Ltd. All rights reserved.

Keywords:

Virtualization

Rootkit detection

Control flow integrity

Kernel stack integrity

Ret-to-sched rootkit

1. Introduction

Kernel-level rootkits pose grave threats to the integrity of the
operating system (OS). With the highest privileges of the OS,
they are able to modify any kernel data and take complete
control of the OS. The integrity of an OS has two aspects:
code integrity and data integrity. Code integrity is easier to
defend with W⊕X protection (Seshadri et al., 2007); however,
data integrity is hard to protect due to its variability. Typical
attacks that can undermine data integrity include Kernel
Object Hooking (KOH) (Wang et al., 2009), Dynamic Kernel
Object Manipulation (DKOM) (Butler and Hoglund, 2004), and
the “return-to-schedule” (ret-to-sched) rootkit (Hofmann et al.,
2011). The first two types of attack target the data in kernel
heaps, while the last type of attack is aimed at the data on
kernel stacks.

Currently, virtualization is a significant technology for pre-
venting these attacks, since it provides a higher privilege than
the OS. Several defensive methods based on virtualization tech-
nology have been proposed to counter the attack methods
mentioned above. Systems such as HookSafe (Zhi et al., 2009)
keep track of kernel objects of interest to prevent a KOH attack.
In addition, systems such as KernelGuard (Junghwan et al., 2009)
and VMDetector (Ying et al., 2011) try to detect DKOM attacks
by identifying invariants through code analysis or multi-view
comparison. However, all of these defensive methods focus on
the data in kernel heaps, while leaving the data on kernel stacks
dangerously exposed.

The ret-to-sched rootkit (Hofmann et al., 2011) was re-
cently proposed at the well-known ASPLOS academic
conference. It is aimed at kernel stacks, and attacks the return
addresses on kernel stacks in order to transfer kernel control
to the rootkit. It can completely subvert the integrity of the OS

* Corresponding author.
E-mail address: lwt1231234@126.com (W. Liu).

https://doi.org/10.1016/j.cose.2017.09.008
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 7 2 (2 0 1 8) 9 6 – 1 0 6

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:lwt1231234@126.com
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.09.008&domain=pdf

and possesses high-secluded performance. Since kernel stacks
are large regions of untyped memory and are resistant to tra-
versal, it is hard to protect the data on kernel stacks.

To the best of our knowledge, OSck (Hofmann et al., 2011)
is the first and the only system to handle this kind of threat.
It periodically detects the ret-to-sched rootkit by ensuring that
the return addresses on the stacks of the scheduled pro-
cesses correspond to valid kernel code regions. However, the
protection it offers for kernel stacks is not comprehensive; its
asynchronous design and lack of protection for the other types
of data on the kernel stacks may put the operating system at
risk. It also fails to take into account some other potential attack
methods that may be adopted by an improved ret-to-sched
rootkit.

Overall, current integrity protection methods can effec-
tively protect the data in kernel heaps, but cannot completely
prevent attacks on the data on kernel stacks. This paper ad-
dresses the problem of kernel stack safety to ensure the integrity
of the OS kernel. The kernel stack protection (KSP) model is
proposed to protect the data on kernel stacks. The key point
of the model is that it allows the execution unit (in this paper,
an execution unit means a piece of code with its own stack)
to write to its own current kernel stack with legal kernel codes.
Its synchronous design strategy can defeat a transient attack
and guarantee the legitimacy of all kinds of data on kernel
stacks. In addition to the ret-to-sched rootkit, it can also defeat
some other potential attacks. Finally, a prototype is devel-
oped which demonstrates the effective implementation of the
proposed method.

Our work offers the following contributions:

• We present the kernel stack protection model to protect the
integrity of kernel stacks; it can protect all types of data on
kernel stacks.

• We propose three kinds of potential attacks to improve the
“return-to-schedule” rootkit: rewriting the kernel stacks by
another execution unit, hijacking kernel codes or data to
indirectly attack the current kernel stack and modifying the
kernel stack pointers.

• Based on this model, we implement a prototype and provide
an experimental evaluation of its security and performance.

The rest of this paper is organized as follows. Section 2 de-
scribes related work; Section 3 presents the KSP model; Section
4 describes the overall design of the prototype and its imple-
mentation; Section 5 evaluates its security and performance;
Section 6 discusses the model; and Section 7 presents the
conclusion.

2. Related work

There are several defensive methods which focus on the pro-
tection of stack data. Some of these protect data from
vulnerabilities by introducing additional data onto stacks, and
require the help of compilers to add detection codes and data.
Some adopt virtualization technology to detect data on stacks;
these can make use of asynchronous detection to obtain pe-
riodical snapshots, and then analyze their legality. Alternatively,

they can utilize synchronous design to intercept some events,
and then judge whether or not the data has changed.

OSck (Hofmann et al., 2011) is a system that discovers kernel
rootkits by detecting malicious modifications to OS data using
virtualization technology. In order to focus on the safety of
kernel stacks, we describe only its stack protection mea-
sures. To detect the ret-to-sched rootkit, OSck obtains return
addresses on the kernel stacks of unscheduled processes
through periodical snapshots and ensures that these return
addresses correspond to valid kernel code regions. As the author
of the OSck has said, the rootkit may construct mechanisms
such as the return-oriented program (ROP) attack (Liu et al.,
2011; Shacham, 2007) to avoid this detection. OSck therefore
needs to be extended with the information of the valid kernel
call graph to prevent this kind of attack. However, the call graph
is hard to construct precisely for a non-open source OS, and
OSck may not therefore work well for a non-open source OS.
In addition, the author assumes that “an attacker cannot ac-
curately predict when an OSck check will run”. The implication
is that if an attacker can accurately predict the time of the check
carried out by OSck, the rootkit has a chance to avoid detec-
tion. In addition, there are also several other potential attack
methods that may frustrate detection by OSck, and these are
described in Section 3.

In a similar way to OSck, StackSafe (Liao and Luo, 2015)
detects rootkits by periodically scanning the kernel space of
the guest OS. StackSafe is remarkably efficient because of its
improved scanning strategy. However, its protection of the kernel
stack is not comprehensive, since it is not designed to defend
against ret-to-sched rootkits. For example, StackSafe pro-
vides no protection for the kernel stack pointers, and thus ret-
to-sched rootkits can attack the return address through
hijacking the kernel stack.

VFEP (Tian et al., 2014) makes use of virtualization tech-
nology to detect the return address on stacks, preserving the
return addresses for dangerous functions that may be at-
tacked by vulnerabilities. Whenever these functions return,
VFEP checks them through trapping into the hypervisor,
which introduces a high performance cost. However, ret-to-
sched rootkits can tamper with any return address (not just
those of dangerous functions) on the kernel stacks, and this
would be prohibitively expensive for the VFEP to defend
against.

In conclusion, only OSck is designed to defend against the
ret-to-sched rootkit; the other types of method are not suit-
able for defending against this rootkit. However, OSck is
inadequate to protect the integrity of kernel stacks. This paper
proposes a kernel stack protection model to guard the integ-
rity of kernel stacks.

3. Kernel stack threat model and protection
model

In this section, a brief background and introduction to exist-
ing kernel stack attack methods is given, and the basic defensive
model of KSP is proposed in order to defend against these
methods of attack and to protect the integrity of the kernel
stack.

97c om pu t e r s & s e cu r i t y 7 2 (2 0 1 8) 9 6 – 1 0 6

Download English Version:

https://daneshyari.com/en/article/4955395

Download Persian Version:

https://daneshyari.com/article/4955395

Daneshyari.com

https://daneshyari.com/en/article/4955395
https://daneshyari.com/article/4955395
https://daneshyari.com

