
SOFIA: Software and control flow integrity
architecture

Ruan de Clercq a,*, Johannes Götzfried b, David Übler b, Pieter Maene a,
Ingrid Verbauwhede a

a ESAT/COSIC and imec, KU Leuven, Leuven, Belgium
b Department of Computer Science, FAU Erlangen-Nuremberg, Erlangen, Germany

A R T I C L E I N F O

Article history:

Received 2 November 2016

Received in revised form 30 January

2017

Accepted 27 March 2017

Available online 3 April 2017

A B S T R A C T

Software components are frequently used in cyber-physical systems (CPSes) to control a

physical mechanism, such as a valve or brakes on a car. These systems are extremely sen-

sitive to software vulnerabilities, as their exploitation could lead to injury, damage to

equipment, or environmental catastrophe. This paper proposes a hardware-based security

architecture called SOFIA, which protects software running on microprocessors used in CPSes.

SOFIA provides mechanisms to protect software integrity and control flow integrity. This

allows the processor to defend against a large number of attacks, including code injection,

code reuse, and fault-based attacks on the program counter. In addition, the architecture

also defends against software copyright infringement and reverse engineering. All protec-

tion mechanisms are enforced in hardware using cryptographic techniques. We are the first

to propose a mechanism to enforce control flow integrity at the finest possible granularity

using cryptographic techniques. A SOFIA core has been created by implementing the pro-

posed architectural features on a LEON3 microprocessor. The SOFIA core requires that its

software conforms to a strict format. To this end, we additionally designed and imple-

mented a software toolchain to compile source code that adheres to the formatting rules.

Several benchmarks were compiled with the SOFIA toolchain, and were executed on a SOFIA

core running on an FPGA, showing an average total execution time overhead of 106% com-

pared to an unmodified LEON3 core. Our hardware evaluation shows a clock speed reduction

of 23.2%.

© 2017 Published by Elsevier Ltd.

Keywords:

Control flow integrity

Hardware

Security

Computer architecture

Instruction set randomization

1. Introduction

Cyber-physical systems (CPSes) enable the physical world to
integrate with control systems such as embedded devices or
the Internet of Things (IOT). Software algorithms run on
embedded devices which use sensors to measure physical

processes and actuators to control physical components,
such as a valve or the brakes on a car. The software is
responsible for monitoring and controlling these physical
components to ensure that they are operating correctly.
Examples of CPSes include industrial control systems, process
control, autonomous automobile systems, and medical
implants.

* Corresponding author.
E-mail address: ruan.declercq@esat.kuleuven.be (R. de Clercq).

http://dx.doi.org/10.1016/j.cose.2017.03.013
0167-4048/© 2017 Published by Elsevier Ltd.

c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 6 – 3 5

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:ruan.declercq@esat.kuleuven.be
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.03.013&domain=pdf

The correct functioning of CPSes is crucial, as the failure
can lead to injury, damage to equipment, or environmental ca-
tastrophe. To ensure their correct operation, we need to ensure
that the software that runs on the computational compo-
nents are not compromised. Exploits that target vulnerabilities
in the underlying software are increasingly used to obtain full
system access. The attack surface is also increasing, as pro-
cessors become more interconnected through ad-hoc networks
and through the public Internet. Despite a significant amount
of research to address the underlying problems of software vul-
nerabilities, there are still a vast number of attacks that threaten
the security of software.

This work aims to protect the software running on
low-end microprocessors used in CPSes. We specifically
target software applications that do not require an operating
system. Low-end microprocessors often lack basic architec-
tural support for security, and are frequently deployed in the
field, where it is easy to extract and exploit their software. As
we rely on software to control and monitor physical pro-
cesses, we need to know that the software behaves in a
predictable manner, and an adversary should not be able to
alter their software or tamper with their operation. Ideally,
even if an attacker obtains the code running on a device, he
should not be able to understand it and know, e.g., which
version of the software is being deployed. Not knowing that
will make it harder to exploit potential weaknesses in
the software, such as overflows or incomplete input
validation.

A lot of research has focused on code injection (One, 1996;
Pincus and Baker, 2004) and control flow integrity (CFI) (Abadi
et al., 2005a, 2005b), but current solutions (Bletsch et al., 2011;
Davi et al., 2012; Pappas et al., 2013; Tice et al., 2014; Xia et al.,
2012; Zhang et al., 2013; Zhang and Sekar, 2013) have been dem-
onstrated to be breakable (Carlini and Wagner, 2014; Davi et al.,
2014; Goktas et al., 2014; Schuster et al., 2015), or they require
significant hardware (Arora et al., 2005; Danger et al., 2014; Davi
et al., 2014, 2015; Kayaalp et al., 2012, 2014; Mao and Wolf, 2010)
or OS support found only on high end general-purpose pro-
cessors. CFI forces a program to follow a control flow path along
a Control Flow Graph (CFG) that can be predetermined or cal-
culated at run-time.

Our contribution. In this paper we propose SOFIA, an ar-
chitecture that defends against attacks based on code injection,
code reuse, software tampering, and fault attacks on control
flow.The architecture is deeply integrated in a processor’s pipe-
line stages, and relies on cryptographic methods to protect the
running software. In particular, SOFIA enforces control flow in-
tegrity, software integrity, and code secrecy. In detail, our
contributions are as follows:

– We offer reliable tampered code protection, i.e., tampered
instructions or instructions that occur during illegal control
flow will not be executed. Furthermore, metadata stored in
memory is protected from tampering.

– We protect against powerful adversaries in control of
all memory as well as against fault attacks on control
flow.

– Our policy is enforced entirely in hardware and does not
enforce protection by means of any software stored in
memory.

In addition we provide a thorough, real-world evaluation
of SOFIA.To this end, we designed and implemented a compiler-
based toolchain to transform software to be executed on a
SOFIA core. We further implemented a SOFIA core in VHDL as
an extension to the LEON3 soft processor. In addition, the per-
formance overhead was evaluated by executing a number of
different benchmarks on the SOFIA core programmed on an
FPGA.

The remainder of this paper is structured as follows. First,
the problem statement is provided including the threat model
and system goals. Next, the proposed architecture is de-
scribed. Afterwards, we present a description of the hardware
implementation, followed by implementation details of the
toolchain. We then describe the current state-of-the art in
control flow integrity and give a security and performance
evaluation of our solution. Finally, we conclude our work with
an outlook over future research directions.

2. Problem statement

In this section we discuss the system model, composed of a
threat model and a set of system requirements.

2.1. Threat model

This work considers an adversary capable of the following:

• Full control of program and data memory. The attacker can
replace parts or all of the software, including the entire stack,
program memory, data memory, ROM and RAM.

• Full control of external I/O pins of the processor. He is able
to probe the external memory bus and disconnect exter-
nal components. However, the internal components of the
processor cannot be altered or probed.

• Capable of performing non-invasive fault attacks that target
the program flow, such as glitching the clock. However, other
types of fault attacks that do not target the program flow,
such as glitching the ALU or bus of the processor, are not
considered part of the attacker model.

• Side-channel attacks are not considered.
• With respect to cryptographic capabilities, we follow the

Dolev-Yao (Dolev and Yao, 1983) model, where an attacker
is capable of performing protocol-level attacks, but cannot
break cryptographic primitives.

2.2. System goals

In this work, a hardware-based security architecture per-
forms run-time verification of the integrity and execution of
software. To this end, the requirements of the system are as
follows.

Software integrity: The attacker should not be able to execute
tampered software on a SOFIA core. We consider the soft-
ware to consist of instructions and read-only data.

Control flow integrity: The attacker should not be able to
change the control flow of running software along an invalid
path without this being detected. This includes software-
based attacks based on code-reuse such as jump-oriented-

17c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 6 – 3 5

Download English Version:

https://daneshyari.com/en/article/4955467

Download Persian Version:

https://daneshyari.com/article/4955467

Daneshyari.com

https://daneshyari.com/en/article/4955467
https://daneshyari.com/article/4955467
https://daneshyari.com

