
DFRWS 2017 USA d Proceedings of the Seventeenth Annual DFRWS USA

SCADA network forensics of the PCCC protocol

Saranyan Senthivel, Irfan Ahmed*, Vassil Roussev
GNOCIA, Department of Computer Science, University of New Orleans, 2000 Lakeshore Dr, New Orleans LA, 70122, USA

Keywords:
SCADA forensics
SCADA protocol
PCCC
Network traffic analysis
Programmable logic controller

a b s t r a c t

Most SCADA devices have few built-in self-defence mechanisms, and tend to implicitly trust commu-
nications received over the network. Therefore, monitoring and forensic analysis of network traffic is a
critical prerequisite for building an effective defense around SCADA units. In this work, we provide a
comprehensive forensic analysis of network traffic generated by the PCCC(Programmable Controller
Communication Commands) protocol and present a prototype tool capable of extracting both updates to
programmable logic and crucial configuration information. The results of our analysis show that more
than 30 files are transferred to/from the PLC when downloading/uploading a ladder logic program using
RSLogix programming software including configuration and data files. Interestingly, when RSLogix
compiles a ladder-logic program, it does not create any low-level representation of a ladder-logic file.
However, the low-level ladder logic is present and can be extracted from the network traffic log using our
prototype tool. The tool extracts SMTP configuration from the network log and parses it to obtain email
addresses, username and password. The network log contains password in plain text.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Supervisor Control And Data Acquisition (SCADA) systems are
used to automate industrial processes, such as power generation
and distribution, gas and oil pipelines, and water and waste man-
agement. Their primary design requirement is safety, which typi-
cally requires real-time response to changes in the monitored
processes, and an ability to handle harsh working environment;
they were never designed to withstand cyber attacks of any kind.
Early SCADA systems were deployed in specialized isolated net-
works, which are not connected with corporate networks, or the
Internet. Thus, they were protected from remote attacks by virtue
of not being accessible over the network.

Over the past two decades, with the increased convergence of
data networks, SCADA systems are ever more tightly integrated
with the TCP/IP infrastructure (Ahmed et al., 2012). Although the
standardization of all communication brings substantial economic
advantages, it also brings the potential of remote attackers gaining
access to inherently insecure devices, and executing attacks on the
physical infrastructure with potentially catastrophic consequences
(McLaughlin et al., 2016; Robinson, 2013). Stuxnet for instance, is a

malware that specifically targeted industrial automation systems
(Langne, 2013).

SCADA systems generally consist of sensors, actuators, pro-
grammable logic controllers (PLCs), and a humanmachine interface
(HMI) (Stouffer et al., 2011; Macaulay, 2012). A PLC is deployed at a
remote field site to provide immediate monitoring and control of a
physical process. HMI and other SCADA services (such as engi-
neering workstation and historian) run at a control center and
provide the means for operators to remotely observe and control
the processes.

A PLC communicates with its respective control center to send
the current state of physical process, which is then displayed by
HMI graphically for control operators. It uses sensors to obtain the
current state of physical process (such as pressure of the gas in
pipeline), and actuators (such as solenoid valve) to alter the current
state depending on the logic in the PLC. For example, a PLC may be
programmed tomaintain pressure in a gas pipeline between 40 and
50 PSI. Based on readings from the pressure sensor, if the gas
pressure is more than 50 PSI, the PLC opens the solenoid valve to
release some gas until the pressure is reduced to 40 PSI.

An engineering workstation at the control center runs PLC
programming software, which is used by control engineers to
program and transfer the control logic to a PLC over the network.
Unfortunately, an attacker can also acquire and utilize the software
to create a malicious control logic program, and download it to a
PLC after establishing a communication with the PLC. At worst, an

* Corresponding author.
E-mail addresses: ssenthiv@my.uno.edu (S. Senthivel), irfan@cs.uno.edu

(I. Ahmed), vassil@cs.uno.edu (V. Roussev).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2017.06.012
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 22 (2017) S57eS65

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ssenthiv@my.uno.edu
mailto:irfan@cs.uno.edu
mailto:vassil@cs.uno.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.06.012&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.06.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.06.012
http://dx.doi.org/10.1016/j.diin.2017.06.012


attacker can compromise an engineering workstation and utilize its
programming software to re-program the PLCs, or to modifying the
current logic in the PLCs. The Stuxnet malware is a pertinent
example that mainly targets engineering workstation running
Windows operating system, and compromises Siemens STEP7
programming software to further infect the Siemens PLCs.

The most direct approach to investigating a potential breach is
to attempt to acquire the current logic from PLCs using the pro-
gramming software for further analysis. However, this method is
not viable if the communication between the PLC and control
center is disrupted. Also, the communicationwith the PLCs may not
be reliable if the system is under a cyber attack and the attacker
may manipulate the communication such as through man-in the
middle attack.

Therefore, to reliably investigate these kind of attacks, SCADA
network traffic log must be kept and analyzed to identify unau-
thorized transfer of control logic to PLCs including extracting
relevant forensic artifacts. A first step in this direction is to un-
derstand how a programming software transfers the PLC control
logic over the network using a SCADA protocol.

This paper presents a comprehensive analysis of PCCC protocol
for transferring control logic to a PLC. We use AlleneBradley's
RSLogix 500 programming software (RSLogix500, 2017) and
Micrologix 1400 PLC (MicroLogix 1400 Series B, 2017) for experi-
ments. The analysis results show that when the programming
software downloads or uploads a control logic program to and from
the PLC, the network traffic not only contains the control logic but
also system configuration and other data (such as counter, input,
output, timer etc.). The PCCC message has file type and file number
fields that we use to extract and store different type of information
into files. Prior to this work, most of these file types had remained
undocumented even in vendor specifications.

Using differential analysis, we performed a comprehensive set
of experiments to understand the type of contents in the files and
further classify unknown file types accordingly. One of the first
observations is that, whenever RSLogix compiles the control logic,
it does not create any output file on the workstation. In other
words, there is no observable low-level representation of control
logic, data or configuration file that is suppose to be transferred to
and run by the PLC. This program, however, can be extracted from
the network traffic; the first sign of logic transfer (in the log) is that
the PLC is switched from RUN to PROGRAM mode, and back to RUN

upon completion of the transfer.
Based on our findings, we developed a proof-of-concept proto-

type tool, called Cutter, to perform the forensic analysis of SCADA
network traffic. Cutter is useful for identifying any transfer of
logic program and configuration files to/from a PLC in a network
packet capture, and further extracting them for forensic analysis. It
parses the PCCC message format, identifies the boundary of the
messages representing start and end of the transfer of logic pro-
gram in a network traffic capture, filters out irrelevant messages
within the boundary, and assembles the relevant messages (con-
taining the program and other data files) in a correct sequence, and
stores the assembled data in files on disk. It is also capable of
parsing input, output and configuration files and presenting the
content in a readable format for further analysis. The input and
output files contain sensor readings and the state of other input
devices (such as on or off in toggle switches), and actuator state
respectively. The configuration files include SMTP client and
network configurations such as username/password, email ad-
dresses, and IP/Subnet mask.

We evaluate the Cutter in two distinct scenarios. The first one
simulates an attacker modifying the control logic of a PLC. When
the logic is transferred to a PLC, it is captured in a network traffic
log; Cutter analyzes the log and identifies the evidence of logic

transfer successfully. It further extracts the transferred logic from
the log and compares it with the original logic for integrity
checking. In the second scenario, attackers modify the SMTP client
configuration of a PLC by adding their email address to receive the
copy of notifications. Cutter extracts the SMTP configuration from
the log, compares it with the original, and identifies the attacker
email address successfully.

In sum, this workmakes the following contributions to the field:

� We perform a detailed analysis of the network traffic of PCCC
protocol and reverse engineer the entire process of transferring
a control logic program to a PLC.

� We identify several unknown file types in the PCCC traffic
containing important information of forensic relevance, such as
SMTP client configuration, ladder logic program, and other
system and network configurations. We further classify these
file types according to their content.

� We develop a network forensic tool, Cutter, that is able to
extract forensic artifacts (or files of different types) from a PCCC
network traffic log, and further parse them to extract informa-
tion and present it in human readable form.

� We demonstrate the effectiveness of Cutter in two distinct
scenarios: 1) detections of malicious control logic injection; and
2) detection of a compromised SMTP configuration.

The rest of the paper is organized as follows: Section Control
logic transfer via PCCC presents a detailed analysis of the
control logic transfer via the PCCC protocol. Section
Implementation presents the implementation details of the Cut-

ter prototype tool, followed by Section Evaluation with the eval-
uation results. Section Related work presents the related work
followed by a conclusion in Section Conclusion.

Control logic transfer via PCCC

We first analyze the transfer process of a control logic to a PLC
using PCCC protocol, with the goal of identifying the relevant
forensic traces in the network traffic log.

PCCC protocol. The PCCC is a command/reply protocol that
provides several operational functions, such as diagnostic status,
change mode, and echo. It is supported by many popular PLCs
including PLC-5, SLC500, and Logix family (such as Micrologix and
Controllogix). The PCCC message is transported as an embedded
object in EtherNet/IP (EIP) protocol, which is an adaption of com-
mon industrial protocol (CIP) over Ethernet.

Analysis of PCCC network traffic

Unfortunately, common network analysis tools, such as Wire-
shark, do not support PCCC protocol. There is a vendor document
that describes the format of PCCC message; however, it is valid
when the PCCC is used with DF1 link layer protocol (or for serial
communication) (Allen Bradley's, 2017). As it turns out, the format
is not completely aligned with the traffic observed over Ethernet.
The focus of our research is to develop a forensic tool for Ethernet
and IP infrastructure. Our lab has a licensed software, NetDecoder
(NetDecoder) commonly used in the industry for debugging. Net-
Decoder supports PCCC and can parse its messages. We use it to
understand the fields of a PCCC message and the messages
involving in the transfer of control logic.

Data collection. We use the Allen Bradley Micrologix 1400

PLC that supports PCCC protocol, and the RSLogix programming
software to create a control logic program and transfer it to the PLC.
The software is installed in a Windows 7 computer, which is
directly connected to the PLC. We use NetDecoder to capture the

S. Senthivel et al. / Digital Investigation 22 (2017) S57eS65S58



Download	English	Version:

https://daneshyari.com/en/article/4955619

Download	Persian	Version:

https://daneshyari.com/article/4955619

Daneshyari.com

https://daneshyari.com/en/article/4955619
https://daneshyari.com/article/4955619
https://daneshyari.com/

