
DFRWS 2017 USA d Proceedings of the Seventeenth Annual DFRWS USA

Gaslight: A comprehensive fuzzing architecture for memory forensics
frameworks

Andrew Case a, *, Arghya Kusum Das b, c, Seung-Jong Park b, c, J. (Ram) Ramanujam b, c,
Golden G. Richard III b, c

a Volatility Foundation, USA
b Center for Computation and Technology, Louisiana State University, USA
c School of Electrical Engineering & Computer Science, Louisiana State University, USA

Keywords:
Memory forensics
Computer forensics
Memory analysis
Incident response
Malware
Fuzzing

a b s t r a c t

Memory forensics is now a standard component of digital forensic investigations and incident response
handling, since memory forensic techniques are quite effective in uncovering artifacts that might be
missed by traditional storage forensics or live analysis techniques. Because of the crucial role that
memory forensics plays in investigations and because of the increasing use of automation of memory
forensics techniques, it is imperative that these tools be resilient to memory smear and deliberate
tampering. Without robust algorithms, malware may go undetected, frameworks may crash when
attempting to process memory samples, and automation of memory forensics techniques is difficult. In
this paper we present Gaslight, a powerful and flexible fuzz-testing architecture for stress-testing both
open and closed-source memory forensics frameworks. Gaslight automatically targets critical code paths
that process memory samples and mutates samples in an efficient way to reveal implementation errors.
In experiments we conducted against several popular memory forensics frameworks, Gaslight revealed a
number of critical previously undiscovered bugs.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In recent years memory forensics has become a standard
component of digital forensic investigations and incident response
handling. This popularity has occurred because memory forensic
algorithms can find artifacts and detect system state anomalies that
would go undetected by traditional disk forensics or live analysis of
a running system. Because of its power and prevalence in the in-
dustry, as well as its crucial role in investigating suspicious insiders,
malware, and active attackers, it is crucial that memory forensics
frameworks utilize robust algorithms that are capable of with-
standing tampering by malware as well as the effects of memory
smear. Without robust algorithms, malware may go undetected,
frameworks may crash when attempting to process memory sam-
ples, and automation of memory forensics techniques is difficult.

Memory smear (Carvey, 2005) is a common problemwhen non-

atomic acquisition of forensic data is performed. Although it can
occur when acquiring files from the local disk of a running system,
it occurs more frequently when acquiring memory from an active
system. Particularly on systems under heavy load, smear can result
in corruption of significant portions of a memory sample. Since the
contents of memory changes as the acquisition tool runs, in-
consistencies in the acquired data will be present. This can result in
the hardware page tables describing a memory layout that does not
match what the sample contains, and it can also result in virtual
memory pointers referencing invalid data. Malware that wishes to
disrupt memory analysis can also freely tamper with in-memory
data. These possibilities include being able to zero memory re-
gions, overwrite regions with random bytes, and purposely
manipulate pointers and data structures to reference invalid ad-
dresses or addresses that will prevent the memory forensic algo-
rithms from uncovering malicious components.

Incorrectly handling smear and malicious tampering can lead to
many undesirable outcomes, such as the framework crashing when
processing input, triggering of infinite loops, or extremely long
runtimes, as well as the reporting of distorted artifacts. These
conditions are often obvious when an experienced investigator is

* Corresponding author.
E-mail addresses: andrew@dfir.org (A. Case), adas7@lsu.edu (A.K. Das), sjpark@

cct.lsu.edu (S.-J. Park), ram@cct.lsu.edu (J. Ramanujam), golden@cct.lsu.edu
(G.G. Richard).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2017.06.011
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 22 (2017) S86eS93

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:andrew@dfir.org
mailto:adas7@lsu.edu
mailto:sjpark@cct.lsu.edu
mailto:sjpark@cct.lsu.edu
mailto:ram@cct.lsu.edu
mailto:golden@cct.lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.06.011&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.06.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.06.011
http://dx.doi.org/10.1016/j.diin.2017.06.011


interacting with a memory forensics framework directly, such as
when running Volatility (Foundation, 2016) or Rekall (Google et al.,
2016) on the command line, but they are less obvious when the
framework is used indirectly by the investigator, e.g., by an auto-
mated processing harness, such as DAMM (Marziale, 2014) or
VolDiff (aim4r, 2015), or in GUI or web frontends, such as VolUtil
(Breen, 2015) or Evolve (Habben, 2015). In these cases, errors pro-
duced by the library are not always obvious to the investigators,
since errors may be simply written to a log file, which might be
examined closely only if no results are produced. In theworst cases,
the frontend or automation harness does not correctly catch ex-
ceptions or error conditions from the memory framework and the
errors go silently unnoticed. All of these situations are unacceptable
when performing forensic analysis that must withstand legal re-
view as well as when hunting sophisticated attackers and malware
with anti-forensics capabilities.

Remedying the previously described issues requires strenuously
testing the memory parsing components of analysis frameworks for
handling of edge cases and corrupt memory regions. The size of the
codebase and the complexity of modern memory analysis frame-
works, which can process samples from awide variety of versions of
Windows, OS X, and Linux, necessitates that this testing be auto-
mated. As an example, Volatility, one of the most widely used
frameworks, contains support for four hardware architectures, four
operating systems, and over 200 analysis plugins. Combined, this
functionality spans over 60,000 lines of code.Manual analysis of such
a large code base is error-prone and clearly does not scale. Further-
more, the codebase is continuously changing and as suchwouldneed
constantmanual review. Focusing efforts on one framework or tool is
also shortsighted as there are now numerous available frameworks,
both open and closed source, and all require testing.

The term “fuzzing” refers to testing programs by generating
random or semi-random input to cause programs to crash or to
behave incorrectly. In this paper we describe an automated fuzzing
architecture named Gaslight, which can strenuously test critical
components of memory forensics frameworks. Gaslight addresses
all of the previously described concerns and is very efficient in
terms of both processing and disk storage requirements. Specif-
ically, we had the following goals in mind when designing Gaslight:

� Support fuzzing of both open- and closed-source memory fo-
rensics tools, without requiring modifications to the framework
itself.

� Fuzz memory forensics tools written in any programming
language.

� Fuzz as quickly as possible, using all available computing
resources.

� Intelligently discover and report a variety of implementation
errors for memory forensics tools, including crashes, infinite
loops, and resource exhaustion issues.

The following sections discuss related work, describe the
implementation of Gaslight, and discuss several previously undis-
covered programming bugs that Gaslight automatically uncovered
in the latest versions of Volatility and Rekall. The paper concludes
with a discussion of our ongoing work on improving Gaslight.

Related work

Fuzzing for Security Vulnerabilities

The idea of fuzzing applications for security vulnerabilities has a
long history, dating back to 1988 when Bart Miller assigned his
students the task of fuzzing UNIX programs (Miller, 1988). Since
then, fuzzing has become an integral part of application security

testing to find bugs and vulnerabilities that would be difficult to
manually spot or for which manual analysis is not always possible
or scalable (Google, 2016). The most complete fuzzer currently
available is american fuzzy lop (AFL) (Zalewski, 2016a), which has
been used to find numerous significant vulnerabilities in widely
used applications (Zalewski, 2016b).

Unfortunately, AFL, along with other similar fuzzers, are not
directly applicable to memory forensics for several reasons. First,
these tools require access to the source code of tools that will be
tested to instrument them for analysis. This requirement violates an
important goal in the design of Gaslight, specifically, that we do not
require access to nor modify the source code of memory forensics
frameworks being tested.

Second, AFL mutates the entire file being tested and its docu-
mentation recommends files under 1 KB in size for performance
reasons. Such limitations are obviously not feasible with memory
forensics, and Gaslight not only avoids making copies of files, but
also targets only the portions of a memory sample that the memory
forensics framework actually processes, as we discuss in the section
Fuzzer Architecture.

The last issue with AFL and other similar fuzzers is that they are
geared toward targeting native code (e.g., C and Cþþ applications).
As many digital forensics tools are written in Python, these fuzzers
are not immediately usable as they would be fuzzing the Python
runtime instead of the tool. There was an effort (Gaynor, 2015) to
make AFL operable with Python applications, but it requires sig-
nificant changes to the application being tested.

Gaslight is language-independent and efficient and is capable of
fuzzing any memory forensics tool or framework.

Fuzzing forensics tools

Although not directly related to our research goals, there have
been two notable efforts to incorporate fuzzing into memory fo-
rensics and one major effort to fuzz disk forensics tools.

Thefirst of these effortswasdocumentedbyBrendanDolanGavitt
in his paper “Robust Signatures for Kernel Data Structures” (Dolan-
Gavitt et al., 2009). The purpose of Brendan's effort was to deter-
minewhichmembers ofWindows' process descriptor data structure
(EPROCESS) were critical to system stability. To test each member,
virtual machine guests running Windows XP were used and indi-
vidual members were mutated. After each mutation, the running
guest was monitored to determine if it remained stable, crashed, or
otherwise acted undesirably. The end result of this fuzzing effort was
the development of scanning signatures for memory analysis that
utilized only members whose values were critical. Such signatures
are extremely valuable as malware cannot trivially interfere with
themwhile also keeping an infected system stable.

A more recent effort leveraged the sameworkflow as Brendan to
test additional structures (Prakash et al., 2015) and explored the
trustworthiness of memory forensics frameworks by determining
which members of structures could be mutated while still keeping
themachine stable. This is essentially the inverse of Brendan's work
in that Brendan focused on finding stability-critical members. This
new research also supports Linux.

Although both of these efforts involve mutating volatile mem-
ory data, they do not significantly overlap the goals of the research
described in this paper. Furthermore, these previous efforts cannot
easily be adapted to meet our research goals, for several reasons:

1. They do not directly test memory forensics frameworks, but
instead the stability of an operating system to remain stable
after data is mutated.

2. Reliance on a virtual machine for mutations is significantly
slower than our architecture.

A. Case et al. / Digital Investigation 22 (2017) S86eS93 S87



Download English Version:

https://daneshyari.com/en/article/4955622

Download Persian Version:

https://daneshyari.com/article/4955622

Daneshyari.com

https://daneshyari.com/en/article/4955622
https://daneshyari.com/article/4955622
https://daneshyari.com

