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This paper explores the significance of stereo-based stochastic feature compensation (SFC) methods for
robust speaker verification (SV) in mismatched training and test environments. Gaussian Mixture Model
(GMM)-based SFC methods developed in past has been solely restricted for speech recognition tasks.
Application of these algorithms in a SV framework for background noise compensation is proposed in
this paper. A priori knowledge about the test environment and availability of stereo training data is
assumed. During the training phase, Mel frequency cepstral coefficient (MFCC) features extracted from
a speaker’s noisy and clean speech utterance (stereo data) are used to build front end GMMs. During
the evaluation phase, noisy test utterances are transformed on the basis of a minimum mean squared
error (MMSE) or maximum likelihood (MLE) estimate, using the target speaker GMMs. Experiments con-
ducted on the NIST-2003-SRE database with clean speech utterances artificially degraded with different
types of additive noises reveal that the proposed SV systems strictly outperform baseline SV systems in
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mismatched conditions across all noisy background environments.
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1. Introduction

Speaker verification (SV) is the process of validating the claimed
identity of an individual using his or her speech. The task is
achieved by classifying a claimant’s utterance as true (authen-
tic) or false (impostor) based on its statistical similarities with
an enrolled (claimed) speaker’s utterance. Acoustic modeling is
used in the training stage of SV to effectively capture the distri-
bution of features unique to an enrolled speaker. In the standard
Gaussian Mixture Model (GMM)-based SV systems [1,2], acous-
tic speaker models are GMMs obtained by Maximum a Posteriori
(MAP) adaptation [3] of a Universal Background Model (UBM) [2].
During evaluation, given a test speech segment, the log-likelihood
ratio of scores obtained from the MAP-adapted GMMs and UBM
is compared with an empirically determined threshold for final
classification decision. Though the simple GMM-based SV systems
perform quite well for clean speech, the performance is severely
degraded in the presence of environmental noise [4]. A major
challenge in the field of speaker recognition is to make the SV sys-
tem robust towards its acoustic environment. Apart from channel
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distortions, additive background noise has been identified as a
prominent factor for degraded SV performance [4]. The loss of
performance accuracy can be mainly attributed to the mismatch
occurring due to the differences in training and recognition envi-
ronment. Since accurate estimation of noise is infeasible in nature,
traditional approaches aim to compensate for environmental noise.
Noise compensation can be broadly categorized in two domainsi.e.,
acoustic model level and feature level.

Acoustic model adaptation techniques alter the statistical model
parameters learned during the training/enrollment phase to reflect
the acoustic environment of testing/recognition phase [5]. Popular
data-driven model adaptation techniques like Maximum aPosteriori
(MAP) [3] and Maximum Likelihood Linear Regression (MLLR) [6]
use various amounts of adaptation data to achieve this task. State-
of-the-art model compensation techniques like Parallel Model
Compensation (PMC) [7] and Vector Taylor Series (VTS) [8] use an
analytical relationship of the clean and noisy environment. These
methods exploit prior knowledge about the test environment in
the form of a statistical model of the noise or reliable estimates of
the noise distribution. The model adaptation techniques are usu-
ally superior to their feature-level counterparts because they can
appropriately capture the uncertainty caused by noise statistics
[9]. However, besides depending on available clean speaker mod-
els, these methods are computationally intensive and often require
high amount of training data [10].
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Feature compensation techniques map feature vectors
extracted during the recognition phase to reflect the acoustic
environment of the training/enrollment phase. The wide range of
methods explored in this domain can be viewed in three groups.
The first group of methods include high-pass filtering techniques
like Cepstal Mean Subtraction (CMS) [11,12] and RelAtive SpecTral
Amplitude (RASTA) [13]. Despite limited performance improve-
ment, these techniques along with various feature transformation
methods like feature warping [14] and nonlinear spectral magni-
tude normalization [15] find generic application in most speech
related tasks. The second group of feature compensation tech-
niques are noise model-based. They assume prior knowledge of
the noise spectrum. An estimate of the clean speech parameters is
made using either a noise model or representation of the effects of
noise in speech. The parameters of the noise model are estimated
and applied to the appropriate inverse operation to compensate
the recognition signal. Examples include Spectral Subtraction (SS)
[16], Codeword Dependent Cepstral Normalization (CDCN) [17],
Kalman Filtering [ 18], and feature-level VTS [19].

The third group of feature compensation techniques are entirely
data-driven and are stochastic in nature. They are ‘blind’ towards
the nature of the corrupting process and are based on empirical
compensation methods that use direct spectral comparison.
Prior work shows that they often outperform the previous two
approaches for feature enhancement [20]. During the training
phase, some transformations are estimated by computing the
frame-by-frame differences between the vectors representing
speech in the clean and noisy environments (stereo data). The
differences between clean and noisy feature vectors are modeled
by training additive bias vectors on the mean and covariance of
either of the two (clean or noisy) probability distributions. During
the evaluation phase, the bias vectors are used to transform noisy
test feature vectors to their clean feature equivalent based on a
minimum mean squared error (MMSE) estimate. Earlier methods
like CDCN [17,21] used vector quantization (VQ) codebooks to
represent the distribution of clean feature vectors. Due to their
quantization-based framework, these algorithms were unable
to learn the variance of a distribution and were later replaced
by the more flexible Gaussian Mixture Model(GMM)-based nor-
malization techniques e.g., multivaRiate GAussian-based cepsTral
normaliZation (RATZ) [22]. Although the RATZ family of algorithms
approximated the normalized features, the posterior probability
of clean GMM components with respect to the noisy test feature
vectors were usually distorted causing poor MMSE estimates.
To suppress these distortions, the Stereo-based Piecewise LInear
CompEnsation for Environments (SPLICE) algorithm [23] modeled
the noisy feature space using GMMs instead. This produced
significantly better result in robust speech recognition tasks
compared to its predecessors [24]. The effectiveness of SPLICE
framework has since then encouraged it's extended applications
e.g., speech recognition in non-stationary noisy environments
within cars using the Multi Environment Model-based Llnear
Normalization (MEMLIN) algorithm [25] and word recognition
using Noise Adaptive Training [24]. The more recently proposed
Stereo-based Stochastic Mapping (SSM) [26] is principally a more
accurate version of SPLICE based on joint probability modeling of
the noisy and clean feature spaces using GMMs.

In the intermediate stages of the MMSE estimation, algorithms
like RATZ, SPLICE, MMCN rely on approximations of the conditional
distribution of clean and noisy features since its closed form solu-
tion is hard to estimate. Though SSM overcomes this limitation by
deriving an exact conditional distribution from the joint probabil-
ity model, a fundamental drawback still exists. Individual frames of
an utterance are treated independent of each other during feature
transformation. This often resulted in inappropriate dynamic char-
acteristics. Addressing this problem, feature enhancement based on

mapping sequence of frames (cepstral trajectory) was proposed in
[27]. The motivation was based on successful applications of GMM-
based trajectory mapping techniques for voice conversion [28].

The family of stochastic feature compensation algorithms till
date remains a preferable choice for robust speech recognition tasks
due to their relatively lower computational cost and reasonably
good performance. An added advantage is their independence of
any structural assumption about the nature of noise degradation.
However, to the best of the authors’ knowledge, the application of
these techniques has not been studied extensively for robust SV
tasks. In this paper we propose application of standard stochastic
feature compensation methods in a SV framework. Through a com-
parative study of these methods, we highlight their significance for
speaker verification in noisy environment.

The rest of the paper is organized as follows. Section 2 provides
a brief introduction to stochastic feature compensation. Algorith-
mic descriptions of stereo-based feature compensation techniques
used for a comparative study in the present work, are given in Sec-
tion 3 and Section 4. The experiments conducted are discussed in
Section 5, results and discussion in Section6 followed by a brief
summary and conclusion of the work in Section 7.

2. Stochastic feature compensation

Since accurate enumeration of the environmental effects on
speech is a non-trivial task, a simplified version of speech signal
degradation based on additive and convolutional channel noise is
used in practice. It is assumed that the noise is statistically indepen-
dent of speech while the convolutive channel distortions are linear
time-invariant. In the cepstral domain a noisy mel frequency cep-
stral coefficient (MFCC) vector y; is represented in terms of MFCC
vectors of clean speech x;, additive background noise n; and channel
noise h; as follows

Ye =Xt + he + Clog(1 + exp(C~'(n — x¢ — ht))) (1)

where t, Cand C-! are the time frame index, Discrete Cosine Trans-
form (DCT) matrix and the inverse DCT matrix respectively. Due to
the random nature of noise, a given clean feature vector can gen-
erate different noisy feature vectors, and vice-versa, which causes
an uncertainty. Conventionally, Gaussian Mixture Models (GMMs)
are used to represent the MFCC distribution. The additive noise
in general alters the distribution by reducing the variance of each
Gaussian component while the convolutional noise shifts the mean
vectors. State-of-the-art model compensation techniques like PMC
and VTS use the analytical relation in Eq. (1) and an available GMM
of noise to adapt model parameters of noisy speech. In uncontrolled
environments where Eq. (1) is not necessarily valid, faulty adapted
parameters can be generated.

Stochastic feature compensation (SFC) methods are indepen-
dent of any mathematical structure of noise degradation. They
model stereo training data using GMMs. The effect of noise is rep-
resented as additive terms to the mean vectors and covariance
matrices of the clean speech GMMs. Given a noisy test feature vec-
tor yt, a minimum mean squared error (MMSE) criterion is used to
estimate a clean vector X; as follows

X = E[X|ye] = /XP(XlJ’t)dX (2)
X

where x is a random variable representing clean feature vectors
and p(x|y:) is the conditional probability distribution function (pdf)
of x given y;. Depending on the nature of the feature compensa-
tion algorithm, the two broad approaches of deriving p(x|y:) can
be categorized as (i) independent probability modeling and (ii)
joint probability modeling. The independent probability model-
ing methods construct individual GMMs for clean and noisy data.
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