
Research Summary

Memory forensics: The path forward

Andrew Case a, Golden G. Richard III b, *

a New Orleans, LA, United States
b Center for Computation and Technology and Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA, United States

a r t i c l e i n f o

Article history:
Available online 11 January 2017

Keywords:
Memory forensics
Computer forensics
Memory analysis
Incident response
Malware

a b s t r a c t

Traditionally, digital forensics focused on artifacts located on the storage devices of computer systems,
mobile phones, digital cameras, and other electronic devices. In the past decade, however, researchers
have created a number of powerful memory forensics tools that expand the scope of digital forensics to
include the examination of volatile memory as well. While memory forensic techniques have evolved
from simple string searches to deep, structured analysis of application and kernel data structures for a
number of platforms and operating systems, much research remains to be done. This paper surveys the
state-of-the-art in memory forensics, provide critical analysis of current-generation techniques, describe
important changes in operating systems design that impact memory forensics, and sketches important
areas for further research.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

Traditional storage forensics comprises a set of techniques to
recover, preserve, and examines digital evidence and has applica-
tions in a number of important areas, including investigation of
child exploitation, identity theft, counter-terrorism, intellectual
property disputes, and more. Storage forensics tools are focused
primarily on “dead” analysis, typically using bit-perfect copies of
storage media. From these copies, deleted files or file fragments are
recovered, patterns of file access are determined, past web
browsing activity is observed, etc. Over the past decade, a number
of factors have contributed to an increasing interest in memory
forensics techniques, which allow analysis of a system's volatile
memory for forensic artifacts. These factors include a huge increase
in the size of forensic targets, larger case back-logs as more criminal
activity involves the use of computer systems, the use of forensics
techniques in incident response to combat malware, and trends in
malware development, where malware now routinely leaves no
traces on non-volatile storage devices. Importantly, memory
forensics techniques can reveal a substantial amount of volatile
evidence that would be completely lost if traditional “pull the plug”
forensic procedures were followed. This evidence includes lists of
running processes, network connections, fragments of volatile data
such as chat messages, and keying material for drive encryption.

While there has been tremendous progress in building
advanced memory forensics tools since the first rudimentary
techniques were developed around 2004, muchwork remains to be
done in this exciting research area. This paper surveys the state-of-
the-art in a number of areas in memory forensics, including
acquisition and analysis, and attempts to clearly lay out the
research challenges that lie ahead. These challenges include not
only work that remains to be done, such as better analysis tech-
niques for user-level malware, but also fundamental shifts in how
memory forensics tools are designed and how they operate, to
accommodate significant changes in operating systems design.

Area of focus e memory acquisition

Historical approaches to memory acquisition

The ability to acquire volatile memory in a stable manner is the
first prerequisite of memory analysis. Traditionally, memory
acquisition was a straightforward process as operating systems
provided built-in facilities for this purpose. These facilities, such as
/dev/mem on Linux andMac OS X and \\.\Device\\PhysicalMemory on
Windows, provided administrator-level users direct access to
physical memory.

On modern systems, such facilities are generally not available,
however, due to security concerns. In particular, both /dev/mem and
PhysicalMemory allowed for read and write access to physical
memory (CrazyLord, 2002). This allowed malware not only to steal
the contents of kernel memory, but also to modify it. The notorious

* Corresponding author.
E-mail addresses: andrew@dfir.org (A. Case), golden@cct.lsu.edu (G.G. Richard).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2016.12.004
1742-2876/© 2017 Elsevier Ltd. All rights reserved.

Digital Investigation 20 (2017) 23e33

mailto:andrew@dfir.org
mailto:golden@cct.lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.12.004&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.12.004
http://dx.doi.org/10.1016/j.diin.2016.12.004
http://dx.doi.org/10.1016/j.diin.2016.12.004


Phalanx2 rootkit (Case, 2012) leveraged /dev/mem in this manner as
do many other malware variants across operating system versions.

Beyond the security issues, these built-in facilities were
becoming of limited use to investigators as systems under in-
vestigations were rapidly moving towards:

� Having multiple CPU cores and/or physical processors installed
� Increasing amounts of RAM
� Operating system adoption to the demands of scale

Even if the kernel devices such as /dev/mem were available, the
implementations are not safe for memory acquisition onmulticore/
multi-CPU systems, as races to map, remap, and unmap pages can
result in kernel instability. Furthermore, since the acquisition tools
reading from these interfaces are executing in userland, in-kernel
synchronization primitives can't be used to solve the problem.
Thus kernel modules must typically be loaded to allow memory to
be acquired and on multicore/multi-CPU systems, the kernel
modules must be carefully designed to pay special attention to the
operating system-specific rules governing how and when kernel
mode code can be interrupted (generally known as kernel pre-
emption) (Stüttgen and Cohen, 2014).

The continuously increasing amount of RAM installed in sys-
tems leads to page smearing (Carvey, 2005), which is an inconsis-
tency between what the state of memory as described by the page
tables is versus what is actually in those pages of memory. This
issue occurs due to the time lapse between when the page tables
are acquired versus when data is acquired in other portions of RAM.
Smearing will be discussed in full detail in the following sections.

Current issues e page smearing

The following sections describe current approaches to acquisi-
tion across all major operating systems, along with the limitations
of these approaches. Each section is structured to describe the state
of the art, its limitations, and future directions to improve acqui-
sition techniques and procedures. We start with page smearing as it
is one of the most pressing issues.

Current state
As mentioned above, page smearing is an inconsistency that

occurs in memory captures when the acquired page tables refer-
ence physical pages whose contents changed during the acquisition
process. In our experience, this problem is commonly encountered
on systems that have 8 gigabytes or more of RAM installed as well
as systems that are under heavy load. Unfortunately, systems with
less than 8 gigabytes of RAM are increasingly uncommon and
servers frequently have from 16 gigabytes of RAM to hundreds of
gigabytes. The increasing amount of RAM installed in computer
systems means that nearly all captures will contain at least some
amount of smear. Depending on where the smear occurs, this can
result in undesirable results of varying degrees of severity, from
memory pages belonging to one process being assigned to another
in the view of the memory analysis tool, to corrupted kernel data
structures. Unfortunately, memory analysis tools and frameworks
have no method to automatically detect smearing as there is only
one source of data for address translation - the smeared page tables
themselves.

The move to the cloud and the adoption of local cloud
computing models has led to an increase in system utilization
across servers. As recommended by both the Amazon AWS
(Amazon ec2 container serv, 2016) and Google Cloud (Scaling based
on cpu or l, 2016) documentation, running systems at 75% load
achieves the greatest balance of CPU utilization without over-
utilization as well as cost savings. An industry-wide shift to every

server acquired running at 75% capacity with 16GBþ of RAM is a
very different model than the one used to conceive current gen-
eration memory acquisition algorithms.

Issues and limitations
With the exception of attempting to acquire memory as quickly

as possible, acquisition tools currently do not make any effort to
detect or work around smearing. Analysts routinely try to work
around smearing by leveraging hypervisor capabilities when access
to the hypervisor host is possible. As discussed in Ligh et al. (2014),
virtualization technologies such as VMware, HyperV, and Virtual-
Box provide the ability to acquire guest memory VM from the host.
This acquisition can be performed “instantly” by leveraging
hypervisor-specific features, such as snapshots and suspended
states, to freeze the guest in-place. This prevents smearing from
occurring as the guest can no longer make modifications to mem-
ory, and the analyst can simply copy the saved memory state from
the hypervisor's file system. This approach is not universally usable,
however, as obviously not all systems are virtualized. Furthermore,
even in virtualized environments the analyst does not always have
access to the physical host, such as in Amazon's AWS or Microsoft's
Azure. There may also be issues with temporality suspending a
running virtual machine as it may affect production performance
and stability.

Future directions
The issues created by page smearing necessitate that memory

acquisition tools take smearing into account during the acquisition
phase. To this end, we propose several methods that may meet this
need.

Leveraging virtual machine hardware extensions. Our first proposed
method is a modern implementation of the BodySnatcher tool
(Schatz, 2007). BodySnatcher attempted to ‘freeze’ the running
operating system and load a small, second operating system at
runtime. This was performed without the support of hardware-
based virtual machine support as that technology was not yet in
use.

We envision that a modern approach to BodySnatcher could
instead leverage hardware based virtualization to cleanly:

� Insert a new operating system “under” the existing one
� Freeze the existing operating system
� Write memory of the frozen operating system to removable
media or the network

Blue Pill (Rutkowska and Tereshkin, 2008) is a famous example
of leveraging this technology to implement rootkit functionality,
and the same approach could be taken for defensive acquisition
purposes. Besides acquisition from native hardware, this approach
would also work for virtual machine guests where the analyst did
not have host access, as hardware virtualization extensions allow
for nesting of virtual machines. The downside is similar to those of
leveraging traditional hypervisors in that network connections and
other activity would be frozen for the duration of the acquisition.
This is usually not an issue for end-user systems, but is often un-
acceptable for production servers.

Smear-aware acquisition tools. Our second proposed method is for
acquisition tools to become aware of changes to the page tables as
acquisition is performed. Unfortunately, there is no single place in
the kernel that could be monitored for such changes, as applica-
tions and kernel drivers continuously allocate and deallocate
memory as well as making changes to memory as the acquisition
tool runs.

A. Case, G.G. Richard III / Digital Investigation 20 (2017) 23e3324



Download English Version:

https://daneshyari.com/en/article/4955647

Download Persian Version:

https://daneshyari.com/article/4955647

Daneshyari.com

https://daneshyari.com/en/article/4955647
https://daneshyari.com/article/4955647
https://daneshyari.com

