
Scanning memory with Yara

Michael Cohen
Google Inc., 747 6th St., Kirkland, WA, USA

a r t i c l e i n f o

Article history:
Received 1 September 2016
Received in revised form
5 January 2017
Accepted 18 February 2017
Available online 21 February 2017

Key Words:
Memory analysis
Reverse engineering
Windows internals
Operating system
Forensic analysis
Malware detection
Intrusion detection

a b s t r a c t

Memory analysis has been successfully utilized to detect malware in many high profile cases. The use of
signature scanning to detect malicious tools is becoming an effective triaging and first response tech-
nique. In particular, the Yara library and scanner has emerged as the defacto standard in malware
signature scanning for files, and there are many open source repositories of yara rules. Previous attempts
to incorporate yara scanning in memory analysis yielded mixed results. This paper examines the dif-
ferences between applying Yara signatures on files and in memory and how yara signatures can be
developed to effectively search for malware in memory. For the first time we document a technique to
identify the process owner of a physical page using the Windows PFN database. We use this to develop a
context aware Yara scanning engine which can scan all processes simultaneously using a single pass over
the physical image.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

Memory Scanning has been used as a quick and powerful way to
detect anomalies or malicious software running on a system. For
example, pool scanning techniques have been used to detect
remnants of kernel objects such as exited processes, file handles
and other kernel data structures e even after these have been freed
from the active set (Sylve et al., 2016; Schuster, 2006). Scanning
techniques can be used to identify and isolate encryption keys from
process memory (Hargreaves and Chivers, 2008), and detect unique
signatures for malware families (Oktavianto and Muhardianto,
2013).

There are a number of modes of applying scanning techniquese
one can scan the process's virtualized view of memory, or the
physical address space directly (i.e. the raw memory image itself).
In general, scanning the physical address space tends to be faster
because IO throughput is optimized (in the case where the user
wants to exhaustively scan all processes). However scanning the
Virtual Address Space may be more efficient when the user only
wants to scan a targeted subset of running processes.

The Yara library and scanner has emerged as the defacto stan-
dard for communicating signatures used to identify malware files
(Alvarez, 2016; Various, 2016). Popular memory forensic
frameworks have provided the capabilities for applying Yara

signatures directly on memory images (The Volatility Foundation,
2015; The Rekall Team, 2016).

In this paper we evaluate the existing state of the art in applying
yara signatures within the memory analysis domain. In particular
we consider the practical difference of scanning in the Virtual
Process Address space, as opposed to scanning the Memory image
directly.

We describe for the first time a technique, dubbed “Context
Aware Scanning”, which uses theWindows PFN database to rapidly
identify the owner of each physical page, and where that page is
mapped in its virtual address space.

Using this technique provides sufficient context about each
physical address to be able to associate related hits in a single
coherent signature e even when the scan is performed over the
physical address space. We demonstrate this technique as applied
to the Yara scanning engine by implementing a powerful new
context aware scanning methodology.

The novel scanning technique dubbed “Context-Aware” scan-
ning, employs detailed understanding of the address translation
process with optimized scanning of the physical address space, we
are able to gain performance advantage over existing techniques
and efficiently scan multiple processes simultaneously. Finally we
suggest guidelines for constructing more robust, memory-centric
signatures.

Finally we discuss the practical differences between the
different scanning techniques discussed and their applicability in
effective malware identification.E-mail address: scudette@google.com.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2017.02.005
1742-2876/© 2017 Elsevier Ltd. All rights reserved.

Digital Investigation 20 (2017) 34e43

mailto:scudette@google.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.02.005&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.02.005
http://dx.doi.org/10.1016/j.diin.2017.02.005
http://dx.doi.org/10.1016/j.diin.2017.02.005


Background

Malware identification through signature scanning

Identifying malware in files is a very common and established
technique (Sathyanarayan et al., 2008). There are a number of ap-
proaches. On the one end of the scale the NSRL facilitates hash
comparison analysis (Flaglien et al., 2011). This produces a high
level of confidence if a hash matches that the file belongs to the
suspected set. However, exact hash matching is very sensitive to
small variations in the underlying file.

Commonly malware samples are not exactly identical, but
rather are customized or are built from common source trees.
Therefore malware samples can be clustered into malware families,
suggesting that several samples are related to one another,
although not identical.

Similarity hash matching is less sensitive to small variations in
specific files and can be used to classify malware samples into
respective families. However, calculating the similarity hash is
resource intensive and less accurate than simpler approaches
(Breitinger and Baier, 2012).

The YARAmatching engine is commonly used to strike a balance
between matching speed and matching accuracy (Griffin et al.,
2009; Alvarez, 2016). The YARA signature rule format is an easy
to understand domain specific language (DSL). A typical example of
such a rule is given in Fig. 1 which is taken from a malware analysis
report of the Mozart POS malware (Hoffman, 2015).

Each YARA rule contains several sections:

1. Ametadata section is used to facilitate sharing and documenting
the creation of the rule and the analysis.

2. The strings section lists named strings which may be encoded as
hex, have wildcards or specify case insensitive matching or wide
character match.

3. Finally the condition section specifies a logical match condition
which, if evaluates to True, will trigger the rule's matching. In
order to build in some flexibility into the signature, the condi-
tion may specify that only some of the strings shouldmatch, or a
list of alternate matching conditions.

Yara signatures allow for constructing flexible indicators which
can be used to recognize a sample as potentially belonging to a
particular malware family. There are a number of public sources of
Yara signatures (Various, 2016), however these are often designed
to work on static executable files, rather than operate on the
memory image of the running executable. Indeed Yara provides for
constructs which do not easily translate to memory analysis (such
as dereferencing data as file offsets, and PE specific indicators).

These specialized rules should be avoided when writing signatures
suitable for memory analysis. In this paper we do not consider
signatures with more complex constructs than simple string
matches evaluated in simple logical conditionals.

Before we can discuss the differences between scanning a stand
alone file and a process's memory image, we need to understand
how an executable is loaded into a process's virtual memory.

The Windows virtual memory

The following is a brief introduction to the concept of virtual
memory. While this is a widely understood concept in operating
system design, recent advances in memory analysis techniques
have made it possible to reconstruct a process's virtual memory
view more accurately than previously possible (Cohen, 2015;
Gruhn, 2015).

Modern computer systems use a memory management unit
(MMU) to mediate access between the CPU's memory bus and the
physical address bus. When the CPU attempts to access a memory
address, the MMU performs a transformation in hardware on this
address converting it to a Linear Address (Physical Address). It is
this physical address which is used to index into the RAM chips in
order to retrieve the data stored in that location.

The transformation performed by the MMU is guided by the use
of page tables, which are configured and managed by the operating
system.When resolving a virtual address to its physical address, the
MMU divides the virtual address into bit groups and each bit group
is used to index a different array of page table entries (PTE). A
simplified lookup process for 64 bit AMD CPUs is illustrated in Fig. 2
(Intel, 2015).

It is important to realize that each process and the kernel itself
has its own unique set of page tables e and therefore, each process
has a unique view of virtual memory specific to itself. In fact, each
process is free to address its entire virtual address space, relying on
the MMU to route virtual address references to physical pages or
else to generate the appropriate page fault interrupts for the kernel
to resolve.

Fig. 3 illustrates a typical process's virtual memory layout. The
virtual address space is broadly divided into large contiguous re-
gions dedicated to specific uses by the process. For example, a file
mapping (such as an executable mapped into the process's address
space) dedicates a specific range of virtual addresses as backed by a
file on disk. Alternatively the process may allocate memory to be
privately used by itself (for example to be used by the heap or
stack).

In order to keep track of the virtual address layout, the kernel
maintains a set of kernel data structures called the Virtual Address
Descriptors (VAD) (Dolan-Gavitt, 2007; Russinovich et al., 2012).
While each VAD represents a single contiguous region, each page
within this region can take on different states. This is illustrated in
Fig. 3: The single mapped file region consists of both resident pages
in physical memory as well as virtual pages only backed by the file

Fig. 1. A YARA rule used to detect the Mozart POS Malware.

Fig. 2. A simplified illustration of Virtual to Physical address resolution in the AMD64
architecture. The Virtual Address is divided into bit groups and each bit group repre-
sents an index into a different page table. The page table entry contains a pointer to the
next level table, if the page is valid.

M. Cohen / Digital Investigation 20 (2017) 34e43 35



Download English Version:

https://daneshyari.com/en/article/4955648

Download Persian Version:

https://daneshyari.com/article/4955648

Daneshyari.com

https://daneshyari.com/en/article/4955648
https://daneshyari.com/article/4955648
https://daneshyari.com

