
Obtaining forensic value from the cbWndExtra structures as used by
Windows Common Controls, specifically for the Editbox control

Adam Bridge
University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace, Portsmouth, PO1 3HE, United Kingdom

a r t i c l e i n f o

Article history:
Received 3 August 2016
Received in revised form
15 January 2017
Accepted 22 February 2017
Available online 24 February 2017

Keywords:
Windows Common Controls
Digital forensics
Microsoft windows
Volatile memory
Memory forensics
cbwndextra
Editbox
wndclassex

a b s t r a c t

The Windows Common Controls is a library which facilitates the construction of GUI controls commonly
used by Windows applications. Each control is an extension of the basic ‘window’ class. The difference in
the extension results in one control over another; for example, an Edit control as opposed to a Button
control. The basic window class is documented by Microsoft and the generic information about a
Window can be extracted, but this is of very limited use. There is no documentation and very little
research into how these extensions are laid out in memory. This paper demonstrates how the extension
bytes for the Edit control can be parsed leading to identification of previously unobtainable data which
reveal information about the state of the control at runtime. Most notably, the undo buffer, that is, text
that was previously present in the control can be recovered e an aspect which traditional disk forensics
would simply not provide. The paper explains why previous attempts to achieve similar goals have failed,
and how the technique could be applied to any control from the Windows Common Controls library.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

Research into volatile memory has grown in popularity in recent
years because it provides access to data that are simply inaccessible
without it. In the case of malware analysis, the data may be a ma-
licious binary which is memory resident such as Latentbot (Karim
and Regalado, 2015), or in the case of Law Enforcement in-
vestigations the data may be values enteredmanually by a user into
an interface such as an email address or a password for decryption.
In any case of memory analysis, one of the biggest challenges facing
memory analysts is understanding the data structures as they are
laid out in memory. Although access to the source code in open-
source software may provide valuable insight into the data struc-
tures, such insight is likely completely unavailable for closed-
source projects.

This paper focuses on the Edit control which is provided as part
of the Microsoft Windows Common Controls library. The Common
Controls library is a core component of Windows and is closed-
source. The Edit control is ubiquitous in Windows and in Win-
dows applications; it is arguably the most valuable of the Common
Controls from a forensics point of view as it likely contains free text

entered by the user or text of which the user would have been
aware. For example, it is the control into which URLs are entered in
Internet Explorer, it is the control into which command lines are
typed in the Run dialog, it is the control into which searches are
conducted in Windows Media Player, and it is the entire body of a
Notepad document.

The Notepad example is notable because many attempts have
been made to reliably extract the contents of a Notepad document
from a memory capture, but with limited success. This paper ex-
amines the in-memory data structure of the Edit control, how the
data structure came to be understood, and how applying this un-
derstanding resulted in being able to extract pertinent information
about the status of an Edit control e not only the text contained
therein, but also the contents of the undo buffer, the position of the
cursor, what text is selected, and whether the control is configured
to be a password Edit control. The approach is generalised meaning
that it does not apply to an Edit control within a particular appli-
cation (for example, Notepad), but to any Edit control, in any
application running on any recent version of Windows.

The recovery of the text from the undo buffer is particularly
notable because it represents the kind of data that can only be
recoveredwhen analysing volatile memorye this kind of discarded
data would not be saved to disk.

E-mail address: adam.bridge@port.ac.uk.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2017.02.007
1742-2876/© 2017 Elsevier Ltd. All rights reserved.

Digital Investigation 20 (2017) 54e60

mailto:adam.bridge@port.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.02.007&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.02.007
http://dx.doi.org/10.1016/j.diin.2017.02.007
http://dx.doi.org/10.1016/j.diin.2017.02.007


The findings and process which resulted from the early parts of
this research were developed into a proof of concept plugin for the
Volatility Framework which was a winner in the 2014 Volatility
Plugin Contest. As the research progressed, new results were
confirmed and the plugin was updated to reflect the new under-
standing (Bridge, 2016).

Section “Related work” will describe the related work which is
concerned with the recovery of Notepad documents from memory
captures and will explain why the approaches taken are unreliable
and limited. Section “The Window class” will detail the Window
class and explain how the extra information needed to fully un-
derstand the Edit control fits with the existing documentation
provided by Microsoft. Section “Methodology” will describe the
tools and methodology used to identify the data structure and how
the Volatility Framework was leveraged to provide a simple way of
extracting the data. Section “Results”will describe the results of the
experiments. Section “Handling unknown class names”will explain
how the Edit control structures were proven even when Volatility
was not able to identify the Common Control class. Section
“Conclusions” details the conclusions, and Section “Future work”
describes possible future developments of the work, for example, a
generalised approach for all Common Controls.

Related work

There appears to be no documented research concerning the
analysis of the Windows Common Controls in memory generally,
either in published literature or from less formal sources such as
blogs or forums. Similarly, there appears to be no work concerning
analysis of any one of the Common Controls, again, either in pub-
lished literature or in blogs or forums. The likely explanation for
this is that researchers in the memory forensics field tend to focus
on an application or family of applications rather than an element
common to the Windows core, whereas we are interested in
developing generic techniques that work with any application.

Dolan-Gavitt (2010) released code which provided a definition
of some of the properties of a small number of controls from the
Common Controls library for Windows XP 32-bit, but with no
supporting documentation as to how he managed to derive the
properties.

The closest match to the research described in this paper is
analysis of Microsoft Notepad. This is the closest match because the
body of Notepad, that is, the area into which the user types is one
Edit control. Recovery of the text from a Notepad document may
demonstrate tools and techniques that could be generalised and
applied to all Edit controls.

Following are examples of published work that show the three
different approaches to the recovery of the contents of Notepad
instances seen in literature and along with explanations as to why
the findings are unreliable or of very limited use.

Firstly, is the attempt to locate the text by identifying the VAD
node inwhich it can be found. Xiao et al. (2014) conducted research
using Windows 7 Service Pack 1 and concluded that the VAD node
in which the text resides can be reliably identified as it is the node
which is the “biggest” and has the ‘PAGE_READWRITE’ flag set. “[B]
iggest” was taken to mean representing the largest number of
pages in memory.

The PAGE_READWRITE flag reflects the protection which is
assigned to the pages represented by this particular VAD node. As
its name implies, the protection flag PAGE_READWRITE identifies
that these pages can be both read from and written to. It is correct
that the pages of memory containing the text which the user can
modify would have this particular protection. However, our
experimental results showed Xiao, Xu et al.'s technique to be un-
reliable: we found multiple examples of Notepad's data in a VAD

node other than that described in their work.
In fact, during the research for this paper, several different sta-

tistics concerning the VAD nodes were analysed to see if a rule
could be devised which would identify the VAD node representing
the page or pages containing the Notepad text purely by metadata
about the VAD node. However, no such rule could be devised,
meaning that analysis of the VADs would not be a reliable way of
identifying the text from the control.

Secondly, is the attempt to locate the text by identifying a
marker which is a known length before or after the text contained
within a Notepad instance. Chen et al. (2012) conducted research
using Windows XP Service Pack 3 and concluded that a 12-byte
marker could be found immediately before the text, and that the
number of characters making up the text could be read from virtual
page 0xAA, after a known marker. During the research for this
paper, memory samples were taken fromWindows XP Service Pack
3, but the conclusions borne out by Chen et al. could not be
repeated, that is, the rules they devised could not be reliably fol-
lowed to discover the text from the Notepad instance. Our experi-
ments found that the text of the control is stored in a heap entry
and therefore the bytes immediately preceding the text are in fact
just the heap entry header: the header contains data about the heap
and therefore will change with the heap meaning it is not a reliable
marker.

Finally, is the approach taken by Hale Ligh et al. (2014) which is
the most reliable of the three approaches. Hale Ligh et al. discov-
ered that when working with 32-bit versions of Windows XP and
Windows 2003, the metadata of heaps could be analysed to dras-
tically reduce the regions of memory in which the text would be
found. Hale Ligh et al. identified that the heap containing the text
had the ‘HEAP_ENTRY_EXTRA_PRESENT’ flag set in the _HEA-
P_ENTRY.Flags structure; therefore, by iterating through the heaps
the particular heap containing the text could be located. In testing
for this paper, this method did indeed always find the text entered
into Notepad, but it also found some false positives.

In summary, there has been no documented research into the
reliable recovery of text from the Common Controls generally, or
any one specific control. Although Hale Ligh et al.'s approach reli-
ably extracts the text for Windows XP and 2003 32-bit, when false
positives are returned, there is no way of knowing which of the
returned data is the correct one. Also, the method has not been
tested to be generalised to Edit controls in applications other than
Notepad.

The Window class

Each of the Windows Common Control classes inherits from the
Window class. In modern versions of Windows, the Window class
is defined by the WNDCLASSEX structure as can be seen in Fig. 1
(Microsoft, n.d.).

As can be seen, the definition includes generic properties such
as thewindow style, the icon, the cursor and so forth. This structure
is well known and various tools exist to parse these values both at
runtime in a running system and from memory samples.

In order to enhance the Window class, extra information is
stored in the “extra” fields: ‘cbClsExtra’ and ‘cbWndExtra’. As their
names imply, cbClsExtra is used to store the “count of bytes” that
are “extra” for the class, and cbWndExtra is used to store the “count
of bytes” that are “extra” for the Window, that is, a particular
instance of the class. It is this extra data, the data stored in the
cbClsExtra and cbWndExtra, which differentiates one imple-
mentation of a window from another, for example, a List control
from an Edit control.

The purpose of this research is to determine whether the data in
a particular instance of the Edit class, that is, the data referenced by

A. Bridge / Digital Investigation 20 (2017) 54e60 55



Download	English	Version:

https://daneshyari.com/en/article/4955650

Download	Persian	Version:

https://daneshyari.com/article/4955650

Daneshyari.com

https://daneshyari.com/en/article/4955650
https://daneshyari.com/article/4955650
https://daneshyari.com/

