
DFRWS 2017 Europe d Proceedings of the Fourth Annual DFRWS Europe

AFEIC: Advanced forensic Ext4 inode carving

Andreas Dewald a, *, Sabine Seufert b

a ERNW Research GmbH, Heidelberg, Germany
b Basys GmbH, Erlangen, Germany

a r t i c l e i n f o

Article history:
Received 26 January 2017
Accepted 26 January 2017

Keywords:
Digital forensics
Ext4 file system
Data recovery
Open source
Tool

a b s t r a c t

In forensic computing, especially in the field of postmortem file system forensics, the reconstruction of
lost or deleted files plays a major role. The techniques that can be applied to this end strongly depend on
the specifics of the file system in question. Various file systems are already well-investigated, such as
FAT16/32, NTFS for Microsoft Windows systems and Ext2/3 as the most relevant file system for Linux
systems. There also exist tools, such as the famous Sleuthkit (Carrier), that provide file recovery features
for those file systems by interpreting the file system internal data structures. In case of an Ext file system,
the interpretation of the so-called superblock is essential to interpret the data. The Ext4 file system can
mainly be analyzed with the tools and techniques that have been developed for its predecessor Ext3,
because most principles and internal structures remained unchanged. However, a few innovations have
been implemented that have to be considered for file recovery. In this paper, we investigate those
changes with respect to forensic file recovery and develop a novel approach to identify files in an Ext4 file
system even in cases where the superblock is corrupted or overwritten, e.g. because of a re-formatting of
the volume. Our approach applies heuristic search patterns for utilizing methods of file carving and
combines them with metadata analysis. We implemented our approach as a proof of concept and in-
tegrated it into the Sleuthkit framework.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Data reconstruction plays an important role in the field of hard
disk forensics (Casey, 2011) and it is specific to the used file system
(Carrier, 2005). The Ext file system family is encounter as the
standard file system on Linux and Android systems (Fairbanks et al.,
2010). This paper illustrates an approach that enables recon-
structing data without information from the superblock or the
group descriptor table of the Ext4 file system.

Motivation

The Ext4 file system is a widely used file system, which is
nowadays not only standard among Linux distributions, but is also
used on mobile devices (Fairbanks et al., 2010). Ext4 and its pre-
decessors save the metadata in the so-called superblock or the
group descriptor table. Without these metadata structures it is
difficult to interpret the file system correctly and to reconstruct the
data. Of course, the remains the option of file carving, which

however will not be able to recover file systemmetadata and on the
other hand (besides specific techniques for some specific file types)
is not able to copewith file fragmentation. The aim of this work is to
reconstruct data without using metadata structures even in the
case of overwriting or modifying the superblock through, for
instance, overformatting. For previous Ext versions there are ap-
proaches which use the available contents of the metadata struc-
tures (Pomeranz). For example, on the Ext3 file system indirect
block pointers in inodes e data structures where metadata is to be
found on individual files e are saved on content data blocks. By
dereferencing these block pointers, it is possible to reconstruct file
contents. Referencing to the data contents on the Ext4 file system is
handled differently, hence other techniques become necessary.
Such a technique is introduced in this paper.

Contributions

This paper introduces an approach which was developed for
finding and recovering files from an Ext4 file system. Moreover, the
central metadata structures of the file system, such as the super-
block and the group descriptor table, do not need to be available for
our approach to work. Thus, a possible use case for our approach is

* Corresponding author.
E-mail address: research@andreasdewald.de (A. Dewald).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2017.01.003
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 20 (2017) S83eS91

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:research@andreasdewald.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.01.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.01.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.01.003
http://dx.doi.org/10.1016/j.diin.2017.01.003


when parts of the hard disk are overwritten or overformatted
resulting in loss of the original metadata structures. In order to
reconstruct files on the file system, we use search patterns, as it is
known from file carving. However, instead of carving for specific
file types, we carve for inodes. As there are no real magic bytes for
an inode that can be used for simple carving, we build more
complex patterns that identify valid inodes, what to the best of our
knowledge has not been done so far. Carved potential inodes are
then analyzed and the according files are recovered. By this means,
our approach combines techniques form both, file carving, and
metadata analysis. This way, not only the file content, but also the
original file name and path can be reconstructed. We implemented
our approach as a module for the Sleuthkit (Carrier), which is
released open source along with this paper (Dewald and Seufert,
2017), where usage and configuration information is included, too.

Outline

After we discussed related work in the next section, in Section
Ext4 file system novelties, we explain the novelties of Ext4
compared to Ext3. Section Methodology explains the methodology
and implementation of our approach, which is thoroughly evalu-
ated in Section Evaluation. We conclude our paper in Section
Conclusion.

Related work

Brian Carrier (2005) describes in his book different partition and
file systems. Carrier introduces different methods and tools to
support the forensic analysis of the different file systems. The
Sleuthkit (Carrier) is one of his developments, which provides
various command line tools for digital forensics. On the one hand,
we complement the work of Carrier, by highlighting the novelties
in Ext4, and on the other hand, we implement a prototype of our
introduced approach for Ext4 analysis as a plugin for the Sleuthkit
Framework.

In his paper, Craiger (2005) describes digital forensic procedures
for recovering data from Linux systems. He emphasizes the
recovering of deleted and hidden files, data from volatile memory
and files with modified extensions.

Fairbanks et al. (2010) compare the Ext4 file system with its
predecessor from a forensic perspective, whose results we revisit in
this paper. In another paper Fairbanks (2012) thoroughly describes
the Ext4 file system and introduces the upgrade compared to Ext3.
Moreover, the paper documents especially low-level features such
as extents, HTrees and flex groups. Lee and Shon (2014) introduce
procedures for recovering deleted files through metadata struc-
tures on Ext2 an Ext3 file systems and compare these with existing
methods. Narv�aez (2007) describes a procedure to reconstruct files
from an Ext3 file system using the journal.

The work of Pomeranz illustrates an approach to data recovery
on Ext2 and Ext3 file systems that enables the recovery of user data
by using indirect block pointers. The author exploits the fact that,
typically, the first 48 KiB of a file content are not highly fragmented.
Consequently, the first 12 block pointers are usually sequentially

numbered, which similar to our approach applies some kind of
specific carving. However, this particular search pattern cannot be
applied to Ext4 file systems because normally (as we explain later)
extent structures are used instead of indirect block pointers in or-
der to reference file content. Nevertheless, the procedure used in
our approach is similar to the one mentioned above.

Ext4 file system novelties

In this section, we summarize the relevant information about
Ext4, as they are given in Ext4 disk layout (2016). The general layout
of Ext4 is very similar to Ext3, but has changed in some ways that
we want to focus on now. The Ext layout, in general, is based on
sequential blocks of 1024, 2048 or 4096 bytes that are numbered
and grouped together in block groups.

Each block group contains metadata that documents its inner
structure. The general layout of all block groups is identical and is
illustrated in Fig. 1. The superblock contains many essential meta-
data of the file system, such as the number and size of blocks,
number of inodes and reserved blocks, for example. The following
group descriptor table contains one group descriptor per block
group in the file system and the block bitmap stores the free/used
state of each block in the block group in a single bit each. Similarly,
the inode bitmap stores the free/used state of each inode (entry) in
the inode table. The rest of the block group consists of consecutive
data blocks that are used to store data.

Inodes

In all Ext file systems, almost all file/directory metadata, such as
timestamps, access rights, references to data blocks for example,
are stored in the inode of the file (file names, for example, are not,
although they are not always considered as metadata). Inodes are
numbered, starting with inode number 1 and stored in the inode
table of their respective block group.

In Ext4, for the sake of compatibility with prior versions, only
few changes to the inode structure have been implemented. For
example, some of the formerly unused space has been used to
introduce new attributes, as shown in Table 1 (To recall the full
original structure of Ext3 inodes, refer to Table A.9 in Appendix A).

To provide backwards compatibility, the concept of (single/
double/triple) (in)direct block pointers to refer to content data
blocks is still supported in Ext4. However, this concept is only used,
when a old Ext3 file system is converted to Ext4. In all other cases,
Ext4 uses an entirely new concept for data block references, which is
called Extents, which are able to address more storage and allow for
bigger files. Further, so called inline files and inline folders can be
stored directly in the space for extended attributes. Fig. 2 illustrates
exemplary how data blocks of a file are referenced by extents:

The inode of the example-file on the left side of the figure has 60
bytes to store its extent structure. The size of one extent entry is 12
bytes, thus there can be 5 extent entries stored directly. Each extent
structure starts with an extent header with a size of 12 bytes as well.
For completeness, the detailed structure of a extent header is shown
in Table A.6 in Appendix A. The extent header is followed by extent

Fig. 1. General block group layout.

A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83eS91S84



Download English Version:

https://daneshyari.com/en/article/4955663

Download Persian Version:

https://daneshyari.com/article/4955663

Daneshyari.com

https://daneshyari.com/en/article/4955663
https://daneshyari.com/article/4955663
https://daneshyari.com

