
ARTICLE IN PRESS

JID: JISA [m5G; May 12, 2017;13:45]

Journal of Information Security and Applications 0 0 0 (2017) 1–11

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Secure numerical and logical multi party operations

Johannes Schneider a , ∗, Bin Lu

b

a University of Liechtenstein, Liechtenstein
b Ecole Polytechnique Federale de Lausanne, Switzerland

a r t i c l e i n f o

Article history:

Available online xxx

Keywords:

Big data

Secure numerical computations

Secure comparisons

Client-server computation

Secure cloud computing

Secure multi-party computation

Privacy preserving data mining

a b s t r a c t

We derive algorithms for efficient secure numerical and logical operations in the semi-honest model en-

suring statistical or perfect security for secure multi-party computation (MPC). To derive our algorithms

for trigonometric functions, we use basic mathematical laws in combination with properties of the addi-

tive encryption scheme, ie. linear secret sharing, in a novel way for the JOS scheme [23]. For division and

logarithm, we use a new approach to compute a Taylor series at a fixed point for all numbers. Our empir-

ical evaluation yields speed-ups for local computation of more than a factor of 100 for some operations

compared to the state-of-the-art.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following tasks: i) Identify people on a picture

without looking at it; ii) Outsource computations giving away en-

crypted data but keeping keys private. Both tasks come with the

challenge that there is no access to the non-encrypted data. It

seems impossible to work on encrypted data only. Surprisingly,

computing on encrypted data is indeed doable. A rather mature

technique is secure multi-party computation (MPC) relying on non-

collusion of a network of parties. To this date, MPC suffers heav-

ily from its performance overhead. Whereas a lot of emphasis has

been put on optimizing the computation of Boolean circuits, only

limited effort has been made to secure numerical operations effi-

ciently. For example, prior work did not deal with trigonometric

functions such as sine or cosine needed in many applications, such

as signal processing in an industrial context. In fact, aside from ba-

sic operations (such as addition and multiplication) no complex

mathematical operation can be carried out efficiently and accu-

rately. Prior work uses either (slow) iterative schemes or approx-

imations of the function to compute. We address this gap using

a recent scheme called JOS [23] that explicitly separates between

keys and encrypted values. It supports various variants of linear se-

cret sharing, eg. additive blinding with and without modulo as well

as using XOR. The distinction between keys and encrypted values

together with the simple encryption schemes lend itself well to

make use of basic mathematical equations that relate the cipher-

text, the plaintext and the key. In essence, to compute some func-

∗ Corresponding author.

E-mail address: johannes.schneider@uni.li (J. Schneider).

tions we can use the same implementation (plus a few additional

operations) used for plaintexts on the ciphertexts or keys as we

show for trigonometric functions. This makes it possible to bene-

fit from the long history of optimizations of implementations and

algorithms for non-encrypted data. For illustration, our empirical

evaluation yields that the amount of local computation per party

to compute a sine function is only about a factor 2 more than for

computation on non-encrypted data. At times, we also employ the

idea of using multiple encryptions of the same plaintext to derive a

system of equations to leverage operations on non-encrypted data.

This helps to deal with a reduced key space caused by the inabil-

ity to evaluate certain functions designed for non-encrypted data

on arbitrary keys. Additionally, we discuss a method for computing

Taylor series based on scaling the secret value. The scaling makes

it possible to develop the series at a fixed number (for the entire

value range of a secret). This approach yields fast conversion for a

broad range of functions as we demonstrate for division and loga-

rithm.

For logical operations, the key ingredient is an efficient compar-

ison protocol for equality (with zero) and for checking if a value

is less than zero. This is done by using algorithms for conver-

sions between encryption schemes and using large Fan-In gates.

Our ideas might prove valuable in other settings or using other

schemes aside from JOS well.

1.1. Contributions

• Presenting the first algorithms for efficient computation of

trigonometric functions, ie. sine, cosine and tangent. They pro-

vide statistical security using only five rounds, local computa-

tion proportional to computation without encryption and com-

http://dx.doi.org/10.1016/j.jisa.2017.05.001

2214-2126/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: J. Schneider, B. Lu, Secure numerical and logical multi party operations, Journal of Information Security and

Applications (2017), http://dx.doi.org/10.1016/j.jisa.2017.05.001

http://dx.doi.org/10.1016/j.jisa.2017.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
mailto:johannes.schneider@uni.li
http://dx.doi.org/10.1016/j.jisa.2017.05.001
http://dx.doi.org/10.1016/j.jisa.2017.05.001

2 J. Schneider, B. Lu / Journal of Information Security and Applications 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: JISA [m5G; May 12, 2017;13:45]

munication of O (k) bits where k is the security parameter. They

improve on series-based techniques [14] by more than a factor

of 10 in local computation and communication.

• Stating an algorithm for calculating Taylor series efficiently for

a wide range of functions, demonstrated for division and log-

arithm. More concretely, we improve the round complexity of

the state-of-the-art [1,7] for division and logarithm for compu-

tation on 32-bit floats and 64-bit double values by more than

10 rounds.

• Presenting an algorithm for division of a confidential number

by a public divisor requiring only one round without the need

to perform comparisons, which take significantly more than

one round [6,27] .

• Introducing a number of efficient operations using the JOS

scheme [23] for comparison(equality, less than), conversion be-

tween different forms of encryptions and large fan-in gates that

achieve comparable or better performance to prior work using

different schemes. They require a constant number or almost

constant rounds, ie. O (log ∗l) and O (log b l), where l is the num-

ber of bits of the encrypted value and b a parameter. In terms

of local computation our equality protocol is more than a factor

100 faster than the state-of-the-art.

1.2. Outline

After some preliminaries (Section 1.3) focusing on summariz-

ing the JOS scheme and presenting some notation and conventions,

we introduce algorithms for three areas: conversions between en-

cryption schemes (Section 2), logical operations (Section 3) and

numerical operations (Section 4). There are some interdependen-

cies between algorithms from different sections, eg. some conver-

sion algorithms between encryption schemes are used by some al-

gorithms for logical operations. Finally, we give a short empirical

evaluation (Section 5) and we discuss related work (Section 6).

1.3. Preliminaries and notation

We briefly recapitulate notation and concepts from the JOS

scheme [23] . For a secret value a ∈ [0 , 2 l − 1] with l bits and a key

K with b ≥ l bits we consider three kinds of linear encryptions:

• ENC K (a) = a + K : (Purely) additive encryption

• ENC K (a) = (a + K) mod 2 l : Additive (modulo) encryption

• ENC K (a) = a � K: XOR encryption

Given an encryption ENC K (a) we denote the effective maxi-

mum number of bits by the key or the encrypted value by l E .

For ENC K (a) := (a + K) mod 2 l , we have l E = l. For additive en-

cryption of a key K ∈ [0 , 2 b − 1] with b bits, we have l E = b + 1 for

a + K ≥ 2 b and l E = b, otherwise. Denote by subscript i the i th bit

of a number in little Endian notation, eg. for a = 10 : a 0 = 0 and

a 1 = 1 . In particular, E i , a i and K i denote the i th bit of ENC K (a),

a and K . The JOS scheme [23] uses three parties, namely: a key

holder (KH), an encrypted value holder (EVH) and a helper (HE).

The KH holds keys only (most of the time), the EVH keeps en-

crypted values (most of the time) and the helper can have either

of them, but it is not allowed to have an encrypted value and the

matching key. For additive encryption a + K, we define the carry

bit c i to be the “carry over” bit that is added to a i +1 aside from

k i +1 during encryption. Thus, by definition c 0 := 0 and for i >

0 we have c i := 1 iff c i −1 + a i + k i > 1 , otherwise c i := 0. Fre-

quently, we encode ‘TRUE’ as one and ‘FALSE’ as zero. Our algo-

rithms process as inputs encrypted values from the EVH and keys

from the KH. They ensure the encrypted value of the result is held

by the EVH and its key by the KH. For inputs and outputs we

write an encrypted value and key as pair (ENC K (a), K). Thus, we

write for a function f operating on an encryption of value a re-

turning an encrypted value rE and key rK the following (rE, rK)

:= f (ENC K (a), K). In particular, we use the multiplication protocol

MUL [23] and the protocol for bitwise AND, ie. AND . Both typically

take two confidential numbers as input. For AND we sometimes

use larger Fan-Ins as described in [23] . We also assume a pro-

tocol for computing the power a i for a non-confidential integer i

> 0, ie. power POW ((ENC K (a), K), i). It can be implemented using

the multiplication protocol MUL using O (log i) multiplications. To

reduce the number of bits needed we also use scaled power com-

putation SCALEDPOW ((ENC K (a), K), i, s), ie. for a non-confidential

scaling factor s we compute a i /s i −1 . We enumerate keys either by

using primes, eg. K

′ , K

′ ′ , K

′ ′ ′ or using numbers K

0 , K

1 , K

2 . The terms

E ′ , E ′ ′ and E ′ ′ ′ denote that an encrypted value with K

′ , K

′ ′ and, re-

spectively, K

′ ′ ′ .

2. Conversions between encryptions

We show how to convert between all three encryption schemes,

ie. XOR, additive with and without modulo.

2.1. Additive ↔ XOR encryption

Algorithm AddToXOR computes an XOR encryption of a secret

from an additive encryption(with or without modulo). It uses the

carry bits algorithm in Section 3.5 1 and it exploits the definition of

the carry bit c i to get XOR encryptions of the bits.

Theorem 1. Algorithm 1 converts correctly and securely from addi-

tive to XOR encryption.

Algorithm 1 AddToXOR(encrypted value ENC K (a), key K).

1: (ENC K ′′
i
(c i) , K

′′
i
) := Car r yBits (ENC K (a) , K) with i ∈ [0 , l − 1]

2: K

′
i

:= K i � K

′′
i

{by KH}

3: ENC K ′
i
(a i) := e i � ENC K ′′

i
(c i) {by EVH}

4: return (ENC K ′
i
(a i) , K

′
i
)

Proof. For bit e i of ENC K (a) = a + K (with or without mod 2 l) we

have using the definition of the carry bit:

e i = (a i + k i + c i) mod 2 = a i � k i � c i (1)

This can also easily be verified by listing all 8 options for each bit

a i , k i and c i ∈ {0, 1}. In Algorithm AddToXOR we compute e ′
i

:=

e i � e ′′
i

. We show that this definition ofo e ′
i

is equivalent to claimed

return value, ie. an XOR encryption of a i with key k ′
i
, ie. a i � k ′

i
with k ′

i
:= k i � k ′′

i
. We have:

a i � k ′
i

= a i � k i � k ′′ i � 0 (by definition of k ′ i and since x � 0 = x)

= a i � k i � k ′′ i � (c i � c i) (since x � x =)

= (a i � k i � c i) � k ′′ i � c i (due to commutativity of �)

= ((a i + k i + c i) mod 2) � e ′′ i

(by definition of e ′′ i and Equation (1))

= e i � e ′′ i (by Theorem 8)

=: e ′ i
Security follows from the security of Algorithm CarryBits

(Theorem 8) and the fact that Algorithm AddToXOR does not

1 Due to the dependencies among algorithms, it is not possible to avoid refer-

encing later sections of the paper without removing a consequent structuring of

the paper into three main sections (encryption conversions, logical and numerical

operations).

Please cite this article as: J. Schneider, B. Lu, Secure numerical and logical multi party operations, Journal of Information Security and

Applications (2017), http://dx.doi.org/10.1016/j.jisa.2017.05.001

http://dx.doi.org/10.1016/j.jisa.2017.05.001

Download English Version:

https://daneshyari.com/en/article/4955712

Download Persian Version:

https://daneshyari.com/article/4955712

Daneshyari.com

https://daneshyari.com/en/article/4955712
https://daneshyari.com/article/4955712
https://daneshyari.com

