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a  b  s  t  r  a  c  t

The  endpoint  parameters  of molten  steel,  such  as  the steel  temperature  and  the  carbon  content,  directly
affect  the  quality  of  the  production  steel.  Moreover,  these  endpoint  results  cannot  be  the  online  continu-
ous  measurement  in  time.  To solve  the  above-mentioned  problems,  an  anti-jamming  endpoint  prediction
model  is  proposed  to predict  the  endpoint  parameters  of  molten  steel.  More  specifically,  the  model  is con-
structed  on  the  parameters  of extreme  learning  machine  (ELM)  adaptively  adjusted  by  the  evolutionary
membrane  algorithm  with  the global  optimization  ability.  In other  words,  the evolutionary  membrane
algorithm  may  find  the  suitable  parameters  of  an  ELM  model  which  reduces  the  incidence  of  the  over-
fitting  of  ELM  affected  by  the  noise  in  the  actual  data.  Finally,  the  proposed  model  is applied  to predict  the
endpoint  parameters  of molten  steel  in  steel-making.  In  the simulation  experiments,  two  test  problems,
including  ‘SinC’  function  with  the Gaussian  noise  and the  actual  production  data  of basic  oxygen  fur-
nace  (BOF)  steel-making,  are  employed  to evaluate  the  performance  of  the  proposed  model.  The  results
indicate  that  the  proposed  model  has  good  prediction  accuracy  and  robustness  in the  data  with  noise.
Therefore,  the  proposed  model  has  good  application  prospects  in the  industrial  field.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Basic oxygen furnace (BOF) for steel-making is not only an
important smelting technology but also the most effective way
[1–3]. It is used in about 65% steel factories around the world due to
its high productivity and low cost [4,2]. In general, if the endpoint
parameters of molten steel can be predicted accurately, the oper-
ators can adjust the added amount of the auxiliary raw materials,
blowing oxygen and coolant timely [5–9]. And then, the quality of
smelting steel can be improved while the production cost can be
reduced [10,11]. Therefore, the establishment of a reasonable end-
point prediction model has practical significance to accelerate the
development process of the steel industry [12–16].

Nowadays, various models have been proposed to predict the
endpoint parameters of molten steel so as to improve the qual-
ity of steel-making and reduce the production costs. These models
can be roughly divided into three categories, such as mechanism
models, online measurement models and intelligent models (soft
measurement models). First, based on the material balance and the
heat balance, most mechanism models are established for the end-
point parameters of molten steel [17]. The validity of the models
usually depends on the stationary operation procedure and on the
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stability of ingredients for the steel-making raw material. However,
the components of the raw materials are highly volatile in most
of steel plants while the operation process usually relies on more
human experience, which cause great difficulties to the use of the
mechanism models. Second, with the development of the online
measurement techniques, a lot of new and advanced sensors and
equipments are applied to BOF steel-making in order to improve the
control effect [18–21]. But the high cost of the test and maintenance
equipment increases directly the cost of the steel. Third, in recent
years, some scholars have established some endpoint prediction
models of BOF steel-making based on statistics and smart black
box models (such as neural network), and have achieved certain
research results [22–30].

Extreme learning machine (ELM) is a single hidden layer feed-
forward neural network learning algorithm [31]. Unlike the other
learning algorithms (such as gradient descent algorithm) for neural
networks, ELM only needs to set the number of the hidden nodes,
and it does not need setting the parameters of input weights and
thresholds, because these parameters are randomly generated in
each run. Therefore, ELM has the advantages of fast learning speed,
and it is suitable for modeling with real-time requirements [32].

This paper establishes a BOF steel-making endpoint prediction
model which employs an evolutionary ELM. Because the endpoint
results are affected by many factors in BOF steel-making, most
of the common models may  not be competent for this predic-
tion. Evolutionary membrane algorithm (EMA) is an optimization
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technology based on P systems to solve the numerical optimiza-
tion problems [33]. EMA  exhibits a good ability for global search
and convergence speed. Because the standard ELM is vulnerable to
the impact of outlier, EMA  are employed to adaptively adjust the
input weights and thresholds of ELM. In other words, the prediction
model is established, in which evolutionary membrane algorithm
identifies the parameters of ELM. In the simulation experiments,
the proposed model is evaluated on the actual production data in
BOF steel-making. The output of the model is the endpoint param-
eters such as the carbon content and the steel temperature. The
experimental results show that the prediction model can predict
accurately the endpoint parameters of molten steel.

The remainder of this paper is organized as follows. Section 2
presents a brief description of EMA. Section 3 explains the steps
of the evolutionary ELM. In Section 4, the details of the proposed
prediction model are elaborated. Comprehensive study and exper-
imental results are discussed in Section 5, and finally, Section 6
provides the concluding remarks of the study.

2. Evolutionary membrane algorithm

Taking inspiration by the structure and the function of the bio-
logical cells, Păun has proposed a novel distributed and parallel
computing model, named as a membrane computing [34,35]. Based
on the membrane computing [36], EMA  is proposed as a novel
global numeric optimization algorithm for solving the optimization
problems [33]. A membrane computing model consists of mem-
brane structure, multiset, symbol-objects, and reaction rules. In
EMA, the membrane structure, which consists of a skin membrane
containing several elementary membranes, represents an execu-
tion logic of the whole algorithm. A symbol-object represents a
candidate optimal solution of a global optimization problem. Mul-
tiset denotes the set of the candidate solutions because it consists
of several symbol-objects. Reaction rules, inspired by the irregular
Brownian motion, may  update the positions of the symbol-objects
so that it can help EMA  to find the approximate solutions of the
global numeric optimization problem. The process of EMA  for solv-
ing the numeric optimization problems is shown in Fig. 1. The
detailed description of EMA  is discussed as follows.

Step 1. The parameters of EMA  need to be initialized first, such
as the maximum iteration number, the number of symbol-objects,
the number of elementary membranes.

Step 2. After initializing the parameters of EMA, the skin mem-
brane is created. And then, each symbol-object S = [S1, S2, . . .,  Sn]
is initialized in the feasible region of the optimization problem.
n denotes the scale of the symbol-objects. The i-th symbol-object
Si = [si,1, si,2, . . .,  si,D] is a candidate solution for an optimization
problem. D denotes the dimension of a decision variable in the
optimization problem.

Step 3. The fitness of each symbol-object needs to be evaluated
according to the objective function of the optimization problem.
And then, these symbol-objects are sorted according to their fitness.
The sorted symbol-objects are divided equally into some multisets
so that each elementary membrane has its own  multiset. Finally,
the multiset will be sent to different elementary membranes from
the skin membrane.

Step 4. The elementary membrane is a basic evolutionary unit.
In the region of the elementary membranes, the cellular particles
(symbol-objects) are simulated to do irregular Brownian motion.
Because the simulated process is very complex and the cellular
automata model can simulate from the simple state to the com-
plex phenomenon, EMA  introduces the cellular automata model to
simulate the complex process. The detail forms are described as
follows.

Fig. 1. The flowchart of evolutionary membrane algorithms.

Firstly, the symbol-objects of the multiset (W) in the elemen-
tary membrane are mapped into a two-dimensional grid. The row
of the grid equals �

√
sizeof (W)�, where sizeof(W) represents the

number of the symbol-objects in the multiset; at the same time, a
state grid is generated with corresponding to the above-mentioned
two-dimensional grid. The state value is randomly set as either 0
or 1 in the state grid. Note that the state value 0 represents an inac-
tive cellular particle (symbol-object); otherwise the state value 1
indicates an active cellular particle (symbol-object).

Secondly, a symbol-object is randomly selected from the two-
dimensional grid. And then, according to the position of the selected
symbol-object, its neighbors are found from the two-dimensional
grid. And, its state and its neighbor states are also found from the
state grid.

If the state value of the selected symbol-object equals 1 and the
sum of its neighbor state value equals 2, then the following rule is
executed.
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where S1
w and S2

w are two symbol-objects with their state 1, which
are two  neighbors of the current selected symbol-objects.  ̨ is a
random number in the interval (0,1).

If the current state value of a symbol-object equals 1 and the
sum of its neighbor state value equals 3, then the following rule is
executed.
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where S1
w , S2

w , and S3
w are three symbol-objects with their state 1,

which are three neighbors of the current selected symbol-objects.
˛, ˇ, � are random numbers in the interval (0,1), respectively.
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