
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Auto-scaling web applications in clouds: A cost-aware approach

Mohammad Sadegh Aslanpoura,⁎, Mostafa Ghobaei-Aranib,⁎, Adel Nadjaran Toosic

a Department of Computer Engineering, Jahrom Branch, Islamic Azad University, Jahrom, Iran
b Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
c Cloud Computing and Distributed Systems Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Auto-scaling
Resource provisioning
Cloud resource
Cost-aware
Web application
Service level agreement (SLA)

A B S T R A C T

The elasticity feature of cloud computing and its pay-per-use pricing entice application providers to use cloud
application hosting. One of the most valuable methods, an application provider can use in order to reduce costs
is resource auto-scaling. Resource auto-scaling for the purpose of preventing resource over-provisioning or
under-provisioning is a widely investigated topic in cloud environments. The Auto-scaling process is often
implemented based on the four phases of MAPE loop: Monitoring (M), Analysis (A), Planning (P) and Execution
(E). Hence, researchers seek to improve the performance of this mechanism with different solutions for each
phase. However, the solutions in this area are generally focused on the improvement of the performance in the
three phases of the monitoring, analysis, and planning, while the execution phase is considered less often. This
paper provides a cost saving super professional executor which shows the importance and effectiveness of this
phase of the controlling cycle. Unlike common executors, the proposed solution executes scale-down commands
via aware selection of surplus virtual machines; moreover, with its novel features, surplus virtual machines are
kept quarantined for the rest of their billing period in order to maximize the cost efficiency. Simulation results
show that the proposed executor reduces the cost of renting virtual machines by 7% while improves the final
service level agreement of the application provider and controls the mechanism's oscillation in decision-making.

1. Introduction

With the rapid development of cloud computing, nowadays, instead
of purchasing computing infrastructure, many application providers
(APs) tend to host their applications on cloud resources offered by
cloud providers (CPs). Cloud providers such as Amazon EC2 (EC2)
offer resources to the AP in the form of Virtual Machines (VMs) with
the scalability feature and pay-per-use charging model (Lorido-Botran
et al., 2014; Coutinho et al., 2015; Qu et al., 2016). The AP, the
application, and application users can be a webmaster, online store
website, and end users, respectively.

Since the AP, in particular, the Web application provider is aware of
the dynamics of the Web environment and end users requests, static
resource provisioning is not efficient. The reason is that in static
resource provisioning, with increased rate of incoming user requests,
resource under-provisioning occurs which consequently results in
interruption or delayed response to user requests. On the other hand,
in the period of reduced traffic, the issue of resource over-provisioning
occurs and as a result increased AP costs arise (Qu et al., 2016; Arani
and Shamsi, 2015). Therefore, considering the various pricing models

in the cloud (Qu et al., 2016; Shen et al., 2014), the AP usually prepays
a minimum number of resources for its permanent and long-term
needs to receive a discount for this type of rental (for example, reserved
instances in EC2 receive a discount of up to 75%). Consequently, with
load fluctuations, the AP seeks to use the short-term rental model to
cover its temporary needs (for example on-demand machines in the
form of pay per hourly use). However, this approach is not enough as it
requires a mechanism capable of automatically determining the
capacity and the number of rented on-demand resources proportional
to the incoming load (Amiri and Mohammad-Khanli, 2017).

Presentation of an efficient auto-scaling mechanism is a research
topic which is mainly faced with the challenge of maintaining a balance
between cost reduction and the Service Level Agreement (SLA). IBM
proposes a model for autonomous management of auto-scaling me-
chanism in the form of MAPE (Monitor-Analyze-Plan-Execute) loop as
a reference model (Computing, 2006). The MAPE loop model can be
applied to implement a cloud web application system which knows its
state and reacts to its changes. Therefore, the majority of auto-scaling
mechanisms are based on the MAPE loop (Lorido-Botran et al., 2014;
Qu et al., 2016; Mohamed et al., 2014; Ghobaei-Arani et al., 2016;

http://dx.doi.org/10.1016/j.jnca.2017.07.012
Received 18 February 2017; Received in revised form 13 July 2017; Accepted 17 July 2017

⁎ Corresponding authors.
E-mail addresses: aslanpour.sadegh@gmail.com (M.S. Aslanpour), mostafaghobaye@yahoo.com, m.ghobaei@qom-iau.ac.ir (M. Ghobaei-Arani),

anadjaran@unimelb.edu.au (A. Nadjaran Toosi).

Journal of Network and Computer Applications 95 (2017) 26–41

Available online 18 July 2017
1084-8045/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2017.07.012
http://dx.doi.org/10.1016/j.jnca.2017.07.012
http://dx.doi.org/10.1016/j.jnca.2017.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.07.012&domain=pdf


Weingärtner et al., 2015). MAPE-based mechanisms constantly repeat
the four general processes of the monitoring, analysis, planning, and
execution, in a way that a monitor iteratively gathers information about
resources, for example, the status of resource utilization. After mon-
itoring, the auto-scaling mechanism indicates the analysis process (Qu
et al., 2016) to start which can be simple or complicated; simple
analysis is the use of raw information obtained by the monitor, while
complex analysis discovers knowledge from information using methods
such as artificial intelligence or machine learning (Amiri and
Mohammad-Khanli, 2017; Ghobaei-Arani et al., 2017a). Afterward,
by matching obtained analyses to a series of rules predefined by the AP,
the planner makes scale-up or down decisions (rule-based planner (Qu
et al., 2016)). The final phase of the MAPE cycle is the execution of the
decision by the executor. This is when the auto-scaling mechanism
needs to send a request for instantiation of a new VM or release of the
one of the VMs previously rented from the CP. This research focuses on
improving the performance of the executor in the resource auto-scaling
mechanism with a cost-aware approach.

The motivation behind the improvement of the executor's perfor-
mance lies in the following: Thanks to the possibility of selecting
different types of VMs with various capacities, APs can rent a large
number of VMs of different types simultaneously; considering the
intense workload fluctuation in the Web environment, this is highly
possible to happen (Singh and Chana, 2016). That said, if the auto-
scaling mechanism makes a scale-down decision, the executor needs to
select from a diverse set of rented VMs and release one. The basic
question posed here is whether it matters which VM is selected? If the
answer is yes, what policy is the best to be used for this selection?
Unlike Amazon's auto-scaling policy that always selects the oldest VM
for release (as default executor) and according to the dark spots seen in
related research (Ghobaei-Arani et al., 2016; Islam et al., 2012; Huang
et al., 2012; Bankole and Ajila, 2013; Ajila and Bankole, 2013; Herbst
et al., 2014; Qavami et al., 2014; García et al., 2014; Singh and Chana,
2015; Fallah et al., 2015; de Assunção et al., 2016), this selection
should be made cautiously and rigorously. This is because, firstly, the
CP calculates partial billing as full billing (billing cycle) (Moldovan
et al., 2016; Li et al., 2015). For example, in the EC2 service, billing is
carried out on an hourly basis and the release of a VM for a duration of
4 h and 1 min would result in billing for 5 h. Therefore, policy making
for minimizing the minutes wasted in the release of surplus VMs is an
important economic matter for the AP. Secondly, due to unresolved
load balancing challenges (Khan and Ahmad, 2016), candidate VMs are
probably processing different workloads and the influence of releasing
each VM on the SLA would vary. Hence, the first purpose of the present
research is to employ novel policies, especially cost saving ones, in the
selection of surplus VMs (professional executor).

A research gap can be still seen after the selection of the surplus VM
and before its release. On the one hand, it is likely that the selector did
not manage to find a VM with exactly X hours of use. In this situation,
the release of that VM would impose extra costs. On the other hand, a
scale-up decision may be made immediately after the release of the
surplus VM; in this case, the delayed startup of the new VM is a
challenge which negatively affects SLA (Lorido-Botran et al., 2014;
Coutinho et al., 2015; Qu et al., 2016). Due to the unpredictability of
the Web environment (Panneerselvam et al., 2014; Gholami and Arani,
2015) or maladjustment of scaling rules (Qu et al., 2016), it is highly
likely that the mechanism to be affected by contradictory actions when
the mechanism is in an oscillation condition (Lorido-Botran et al.,
2014; Qu et al., 2016). As a result, the following hypothesis is put
forward: If the selected surplus VM stays rented by the AP until the last
minute of the bill, it can possibly be used for the improvement of the
scaling mechanism's performance. Therefore, the other goal of this
research is to offer an executor with the ability to quarantine the
surplus VM until the billed hour is completed in order to resolve the
challenge of delayed VM startup (super professional executor - Suprex).
This is while to date, researchers merely considered benefits of vertical

scaling or applying cooling time in the execution of the commands as
the method for overcoming this challenge (Qu et al., 2016).

This paper presents a scaling mechanism equipped with a super
professional executor (Suprex) with a cost-aware approach. We seek to
show that the execution phase of the MAPE cycle can play an effective
role in cost saving. We explain all four phases as they are required for
the full implementation of the auto-scaling mechanism. This is also
required for better understanding of the paper. The auto-scaling
mechanism offered in this research is different from others where the
focus is mainly on improving the mechanism's performance in the
monitoring, analysis, and planning phases rather than the execution
phase. The reason why the execution phase was overlooked lies in the
fact the actions are often considered under the control of the CP and
the CP is considered as a black box. However, by applying an
architecture with full control (Casalicchio and Silvestri, 2013) from
the AP's perspective, the power is granted to the AP in the execution of
all scaling commands. The main contributions of this research are as
follows:

1. We designed an auto-scaling mechanism based on the MAPE
concept for Web applications,

2. We enhanced the effectiveness of the execution phase of the control
MAPE loop with a cost-aware approach,

3. We provided an innovative solution for overcoming the challenges of
delayed VM startup,

4. We designed an executor in order to mitigate oscillation and
increase the stability of the mechanism, and

5. We conducted a series of experiments to evaluate the performance of
proposed approach under real-world workload traces for different
metrics.

The rest of the article is organized as follows: Section 2 provides the
necessary background. Section 3 includes related work; Section 4 fully
explains the proposed approach. Section 5 simulates and evaluates the
performance of the Suprex executor. Section 6 discusses the experi-
mental results in details. Finally, Section 7 presents conclusions and
future work.

2. Background

This section provides a brief overview of autonomic computing and
application adaptation.

2.1. Autonomic computing

The increasing complexity of computer systems makes it essential
to handle them autonomically. IBM's Autonomic Computing Initiative
has helped to define the four properties of autonomic systems: self-
configuration, self-optimization, self-healing, and self-protection
(Computing, 2006). Cloud computing providers manage their data
centers in an efficient way, taking cues from well-established auto-
nomic computing practices. Particularly, tasks like VM provisioning,
disaster recovery, capacity management, etc. are performed auto-
nomically (Dhingra, 2014). To effectively manage cloud deployed web
applications, we need to react to regularly occurring or anticipated
events in the system (Ghobaei-Arani et al., 2017b). In (Computing,
2006), IBM proposes a model for autonomous management in the form
of an autonomic MAPE-K loop as a reference model. The MAPE-K loop
model can be applied to implement a cloud web application system
which knows its state and reacts to changes in it. This model details
different components that allow an autonomic manager to self-manage
properties, namely Monitor, Analyze, Plan, Execute and Knowledge
(Rheddane, 2015). The MAPE-K loop model is depicted in Fig. 1 and
discussed in the remaining part of this section.

The MAPE-K loop model is applied to auto-scaling of web applica-
tions in the cloud environment. The auto-scaling process of web

M.S. Aslanpour et al. Journal of Network and Computer Applications 95 (2017) 26–41

27



Download English Version:

https://daneshyari.com/en/article/4955823

Download Persian Version:

https://daneshyari.com/article/4955823

Daneshyari.com

https://daneshyari.com/en/article/4955823
https://daneshyari.com/article/4955823
https://daneshyari.com

