Journal of Systems Architecture 80 (2017) 68-76

journal homepage: www.elsevier.com/locate/sysarc

Contents lists available at ScienceDirect

Journal of Systems Architecture

Feedback for increased robustness of forwarding graphs in the cloud

Victor Millnert™?, Johan Eker™", Enrico Bini®

@ Lund University, Sweden
P Ericsson Research, Sweden
€ University of Turin, Italy

@ CrossMark

ABSTRACT

Cloud computing technology provides the means to share physical resources among multiple users and data
center tenants by exposing them as virtual resources. There is a strong industrial drive to use similar technology
and concepts to provide timing sensitive services. One such domain is a chain of connected virtual network
functions. This allows the capacity of each function to be scaled up and down by adding or removing virtual
resources. In this work, we develop a model of such service chain and pose the dynamic allocation of resources as
an optimization problem. We design and present a set of strategies to allow virtual network nodes to be con-
trolled in an optimal fashion subject to latency and buffer constraints. Furthermore, we derive a feedback-law for
dynamically adjusting the amount of resources given to each functions in order to ensure that the system remains
in the desired state even if there are modeling errors or for a stochastic input.

1. Introduction

Over the last years, cloud computing has swiftly transformed the IT
infrastructure landscape, leading to large cost-savings for deployment
of a wide range of IT applications. Some main characteristics of cloud
computing are resource pooling, elasticity, and metering. Physical re-
sources such as compute nodes, storage nodes, and network fabrics are
shared among tenants. Virtual resource elasticity brings the ability to
dynamically change the amount of allocated resources, for example as a
function of workload or cost. Resource usage is metered and in most
pricing models the tenant only pays for the allocated capacity.

While cloud technology initially was mostly used for IT applica-
tions, e.g. web servers, databases, etc., it is rapidly finding its way into
new domains. One such domain is processing of network packages.
Today network services are packaged as physical appliances that are
connected together using physical network. Network services consist of
interconnected network functions (NF). Examples of network functions
are firewalls, deep packet inspections, transcoding, etc. A recent in-
itiative from the standardisation body ETSI (European
Telecommunications Standards Institute) addresses the standardisation
of virtual network services under the name Network Functions
Virtualisation (NFV) [1]. The expected benefits from this are, among
others, better hardware utilisation and more flexibility, which translate
into reduced capital and operating expenses (CAPEX and OPEX). A
number of interesting use cases are found in [2], and in this paper we
are investigating the one referred to as Virtual Network Functions

* Corresponding author.
E-mail address: victor@control.lth.se (V. Millnert).

http://dx.doi.org/10.1016/j.sysarc.2017.09.005

Forwarding Graphs, see Fig. 1.

We investigate the allocation of virtual resources to a given packet
flow, i.e. what is the most cost efficient way to allocate VNFs with a
given capacity that still provide a network service within a given la-
tency bound? The distilled problem is illustrated as the packet flows in
Fig. 1. The forwarding graph is implemented as a chain of virtual net-
work nodes, also known as a service chains. To ensure that the capacity
of a service chain matches the time-varying load, the number of in-
stances m; of each individual network function VNF; may be scaled up
or down.

This paper is an extension of the workshop paper [3], whose main
contributions were the first 4 of the bullet points below. The main
contribution of this paper is the final bullet point, namely the in-
troduction of a feedback-law. Together the contributions are:

o a mathematical model of the virtual resources supporting the packet
flows in Fig. 1,

o the set-up of an optimization problem for controlling the amount of
resources needed by each function in the service chain,

® a solution of the optimization-problem under the assumption of a
constant input flow,

o a feedback-law for dynamically changing the resources used by each
function, allowing for a stochastic input and impulse disturbances.

Received 9 February 2017; Received in revised form 14 June 2017; Accepted 20 September 2017

Available online 22 September 2017
1383-7621/ © 2017 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/13837621
https://www.elsevier.com/locate/sysarc
http://dx.doi.org/10.1016/j.sysarc.2017.09.005
http://dx.doi.org/10.1016/j.sysarc.2017.09.005
mailto:victor@control.lth.se
http://dx.doi.org/10.1016/j.sysarc.2017.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.09.005&domain=pdf

V. Millnert et al.

Logical 7
network _+”
links .~

Mappingto
physical ¢
hardware

Packet flow

| infrastructure I

Fig. 1. Several virtual networking functions (VNF) are connected together to provide a set
of services. Packet flow through a specific path the VNFs (a virtual forwarding graph).
The VNFs consist of a set of virtual resources, e.g., VNF; consist of three virtual machines,
that are mapped onto physical hardware referred to as the virtual network function
virtualization infrastructure (NFVI). In the figure there are two packet flows: a blue
{VNF;, VNF,, VNF3, VNFs}, and a red {VNF;, VNF,, VNF,, VNFs}. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

Related work

In the area of virtual network functions and data center manage-
ment there are a number of works considering the problem of con-
trolling virtual resources. However many of them focus on orchestra-
tion, i.e. how the virtual resources should be mapped onto the physical
hardware. Sparrow [4] presents an approach for scheduling a large
number of parallel jobs with short deadlines. Cohen [5] and similarly
Shen [6] address the issue of placement of VNFs within a physical
network. A number of more works focusing on orchestration of VNFs, or
scheduling of packet flows, can be found in [7-9], however they do not
address the issue of elastically scaling the capacity of the VNFs nor do
they allow for any end-to-end (E2E) constraints over the forwarding
graphs.

The issue of elasticity and dynamic scaling of VNFs is studied by Kuo
in [10], Mao et al. in [11], and recently by Wang et al. in [12] in which
they developed a fast online algorithm for scaling and provisioning
VNFs in a data center, however they still do not consider the issue of
end-to-end constraints on the latency. This is done by Li et al. [13] who
present a design and implementation of NFV-RT that aims at controlling
NFVs with soft Real-Time guarantees, allowing packets to have soft end-
to-end deadlines.

There has been many works outside the area of network function
virtualization that has addressed the enforcement of an end-to-end
deadline of a sequence of jobs that is to be executed through a sequence
of computing elements. In the holistic analysis [14-16] the schedul-
ability analysis is performed locally. At global level the local response
times are transformed into jitter or offset constraints for the subsequent
tasks.

A second approach to guarantee an E2E deadline is to split a con-
straint into several local deadline constraints. While this approach
avoids the iteration of the analysis, it requires an effective splitting
method. Di Natale and Stankovic [17] proposed to split the E2E
deadline proportionally to the local computation time or to divide
equally the slack time. Later, Jiang [18] used time slices to decouple the
schedulability analysis of each node, reducing the complexity of the
analysis. Such an approach improves the robustness of the schedule,
and allows to analyse each pipeline in isolation. Serreli et al. [19,20]
proposed to assign local deadlines to minimize a linear upper bound of
the resulting local demand bound functions. More recently, Hong
et al. [21] formulated the local deadline assignment problem as a
Mixed-Integer Linear Program (MILP) with the goal of maximizing the
slack time. After local deadlines are assigned, the processor demand
criterion was used to analyze distributed real-time pipelines [20,22].

In all the mentioned works, jobs have non-negligible execution
times. Hence, their delay is caused by the preemption experienced at

69

Journal of Systems Architecture 80 (2017) 68-76

each function. In our context, which is scheduling of virtual network
services, jobs are executed non-preemptively and in FIFO order. Hence,
the impact of the local computation onto the E2E delay of a request is
minor compared to the queueing delay. This type of delay is intensively
investigated in the networking community in the broad area queuing
systems [23]. In this area, Henriksson et al. [24] proposed a feedfor-
ward/feedback controller to adjust the processing speed to match a
given delay target.

Most of the works in queuing theory assumes a stochastic (usually
markovian) model of job arrivals and service times. A solid contribution
to the theory of deterministic queuing systems is due to Baccelli
et al. [25], Cruz [26], and Parekh & Gallager [27]. These results built
the foundation for the network calculus [28], later applied to real-time
systems in the real-time calculus [29]. The advantage of network/real-
time calculus is that, together with an analysis of the E2E delays, the
sizes of the queues are also modelled. As in the cloud computing sce-
nario the impact of the queue is very relevant since that is part of the
resource usage which we aim to minimize, hence we follow this type of
modeling.

2. Problem formulation

We consider a service-chain consisting of n functionsF, ... F,, as il-
lustrated in Fig. 2. Packets are flowing through the service-chain and
they must be processed by each function in the chain within some end-
to-end deadline, denoted by D™**. A fluid model is used to approximate
the packet flow and at time t there are 1(t) € R* packets per second
(pps) entering the i’th function and the cumulative arrived requests for
this function is

RO = [n@adr. M

In a recent benchmarking study it was shown that a typical virtual
machine can process around 0.1-2.8 million packets per second, [30].
Hence, in this work the number of packets flowing through the func-
tions is assumed to be in the order of millions of packets per second,
supporting the use of a fluid model.

2.1. Service model

As illustrated in Fig. 3, the incoming requests to function F; are
stored in the buffer and then processed once it reaches the head of the
queue. At time t there are m;(t) € Z* machines ready to serve the re-
quests, each with a nominal speed of 5; € Rt (note that this nominal
speed might differ between different functions in the service chain, i.e.
it does not in general hold that §; = §; for i = j). The maximum speed that
function F; can process requests at is thus m;(¢)3;. The rate by which F; is
actually processing requests at time t is denoted s;(t) € R*. The cumu-
lative served requests is defined as

Si(t) = jo’ s;(7) dr. (2

At time t the number of requests stored in the queue is defined as the

queue lengthg,(t) € R*:

g0 = [(@) = s(@)dr = Ri(t) = Si(0). @)

Each function has a fixed maximum-queue capacityq™™ € R*, re-
presenting the largest number of requests that can be stored at the

function F;.
E—r

Fig. 2. Illustration of the service-chain of n connected functions where each box F; re-
present a virtual network function.

ro(t) r3(t) T (t)

r(t) — F1 F,

Download English Version:

https://daneshyari.com/en/article/4956183

Download Persian Version:

https://daneshyari.com/article/4956183

Daneshyari.com

https://daneshyari.com/en/article/4956183
https://daneshyari.com/article/4956183
https://daneshyari.com/

