
Journal of Systems Architecture 78 (2017) 15–29

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Hardware design methodology using lightweight dataflow and its

integration with low power techniques

Tiziana Fanni a , ∗, Lin Li b , Timo Viitanen

c , Carlo Sau

a , Renjie Xie

c , Francesca Palumbo

d ,
Luigi Raffo

a , Heikki Huttunen

c , Jarmo Takala

c , Shuvra S. Bhattacharyya

b , c

a University of Cagliari, Dept. of Electrical and Electronic Engineering, Italy
b University of Maryland, ECE Department, College Park, MD 20742, USA
c Tampere University of Technology, Finland
d University of Sassari, PolComIng - Information Engineering Unit, Italy

a r t i c l e i n f o

Article history:

Received 30 December 2016

Revised 3 May 2017

Accepted 12 June 2017

Available online 15 June 2017

Keywords:

Dataflow

Deep neural networks

Digital systems design

Low power design

Signal processing

Clock gating

Globally asynchronous locally synchronous

a b s t r a c t

Dataflow models of computation are capable of providing high-level descriptions for hardware and soft-

ware components and systems, facilitating efficient processes for system-level design. The modularity

and parallelism of dataflow representations make them suitable for key aspects of design exploration and

optimization, such as efficient scheduling, task synchronization, memory and power management. The

lightweight dataflow (LWDF) programming methodology provides an abstract programming model that

supports dataflow-based design of signal processing hardware and software components and systems.

Due to its formulation in terms of abstract application programming interfaces, the LWDF methodology

can be integrated with a wide variety of simulation- and implementation-oriented languages, and can be

targeted across different platforms, which allows engineers to integrate dataflow modeling approaches

relatively easily into existing design processes. Previous work on LWDF techniques has emphasized their

application to DSP software implementation (e.g., through integration with C and CUDA). In this paper, we

efficiently integrate the LWDF methodology with hardware description languages (HDLs), and we apply

this HDL-integrated form of the methodology to develop efficient methods for low power DSP hardware

implementation. The effectiveness of the proposed LWDF-based hardware design methodology is demon-

strated through a case study of a deep neural network application for vehicle classification.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dataflow models of computation are highly suitable to describ-

ing the functionality of digital signal processing (DSP) applications.

In dataflow graphs, nodes represent computational components,

called actors , and edges model channels for point-to-point commu-

nication between actors. An actor can be executed whenever it has

sufficient data on its input ports and sufficient empty space on its

output ports.

Dataflow models present an intrinsic modularity that facili-

tates the composition and portability of computational compo-

nents (e.g., see [1,2]), being effective in terms of retargetability of

design processes across different platforms (e.g., see [3]). Further-

∗ Corresponding author.

E-mail addresses: tiziana.fanni@diee.unica.it (T. Fanni), lli12311@umd.edu

(L. Li), timo.2.viitanen@tut.fi (T. Viitanen), carlo.sau@diee.unica.it (C. Sau),

renjie.xie@tut.fi (R. Xie), fpalumbo@uniss.it (F. Palumbo), raffo@unica.it (L. Raffo),

heikki.huttunen@tut.fi (H. Huttunen), jarmo.takala@tut.fi (J. Takala), ssb@umd.edu

(S.S. Bhattacharyya).

more, dataflow models facilitate exploration of optimization tech-

niques to achieve efficient implementations of DSP systems (e.g.,

see [4–6]).

Lightweight dataflow (LWDF) is a programming methodology

that allows designers to systematically integrate and experiment

with dataflow modeling approaches in the context of existing de-

sign processes [1] . LWDF is “lightweight” in the sense that the pro-

gramming model is designed to be minimally intrusive on existing

design methodologies and processes, and requires minimal depen-

dence on specialized tools or libraries.

Previous work on LWDF techniques has emphasized their ap-

plication to DSP software implementation (e.g., through integra-

tion with C and CUDA, as presented in [7,8]). In [9] , to the best

of our knowledge, we presented the first study that deeply inte-

grates LWDF techniques with hardware description language (HDL)

programming, and that provides a complex application study in-

volving LWDF-based digital hardware design and optimization.

There is a wide variety of model-based design methodologies

and corresponding tools for digital hardware implementation. For

http://dx.doi.org/10.1016/j.sysarc.2017.06.003

1383-7621/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysarc.2017.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.06.003&domain=pdf
mailto:tiziana.fanni@diee.unica.it
mailto:lli12311@umd.edu
mailto:timo.2.viitanen@tut.fi
mailto:carlo.sau@diee.unica.it
mailto:renjie.xie@tut.fi
mailto:fpalumbo@uniss.it
mailto:raffo@unica.it
mailto:heikki.huttunen@tut.fi
mailto:jarmo.takala@tut.fi
mailto:ssb@umd.edu
http://dx.doi.org/10.1016/j.sysarc.2017.06.003

16 T. Fanni et al. / Journal of Systems Architecture 78 (2017) 15–29

example, the Compaan and Laura tools for HDL code synthesis

from Kahn process networks (KPNs) are presented in [10] . The CAL

programming language and the Orcc toolset provide a novel envi-

ronment for implementing dataflow programs in hardware [11,12] .

The CAPH language and framework represent another recent effort

to generate HDL from a dataflow language [13] . In [14] , methodolo-

gies for hardware synthesis of pipelined dataflow graph structures

are developed to enable high-level, hardware-oriented dataflow

graph optimization. Nezan et al. [15] present an integrated design

flow and corresponding tools that automatically optimize dataflow

specifications to generate HDL designs. The Multi-Dataflow Com-

poser (MDC) tool, a framework for the automatic creation of multi-

functional reconfigurable platforms, performs a complete design

space exploration, evaluating the trade-off among resource usage,

power consumption and operating frequency [16] .

Some relevant works have explored the deployment of mul-

tiple clock domains and clock gating techniques in conjunction

with dataflow-based digital hardware implementations: Brunet

et al. propose a design methodology to partition streaming appli-

cations onto a multi-clock-domain architecture [17] , and Xronos,

a high-level synthesis tool for FPGA platforms, adopts a coarse-

grained clock gating strategy [18] . The MDC tool has the capabil-

ities of identifying disjointed logic regions, and automatically ap-

plying coarse grain clock and power gating techniques to these re-

gions [19,20] .

Generally speaking, these methodologies and tools are limited

by the language used to describe the adopted dataflow description

or by the generated HDL, which can be target dependent. Further-

more, these tools support the user-friendly application of existing

design optimization techniques, rather than the rapid prototyping

of new techniques. Automatically targeting a new language, plat-

form or design optimization technique can require significant ef-

fort in development and maintenance of graph analysis and code

generation functionality. Such effort can sometimes be justified for

models and design approaches that are relatively mature. However,

for experimental methods or methods that are highly specialized

to a particular application, such effort is costly.

LWDF helps to address this gap by providing a compact set

of APIs that can be used to incorporate advanced dataflow tech-

niques in a manner that does not require development and main-

tenance of automation tools. Rather than being focused on automa-

tion, LWDF is designed to help the designer architect an efficient

dataflow-based implementation and iteratively experiment with it.

This capability has been highly useful in the work that we are

reporting on in this paper, as it has allowed us to rapidly incor-

porate and experiment with advanced power optimization tech-

niques in the framework of a systematic dataflow-based design

methodology.

At the same time, because the LWDF APIs are based on formal

dataflow principles, LWDF-based implementations can be well-

suited as a target for automated synthesis and code generation

tools. For example, LWDF APIs for CUDA and C have been targeted

in the DIF-GPU tool for automated synthesis of hybrid CPU/GPU

implementations [21] . Indeed, development of automation support

for the models and methods introduced in this paper is a useful

direction for future work.

In summary, the work in this paper emphasizes the applica-

tion of DSP-oriented dataflow methods in terms of compact and

retargetable APIs, and also emphasizes the rigorous integration of

power-management within the proposed APIs. While the design

techniques developed in this paper are demonstrated concretely in

the context of the Verilog HDL, their formulation in terms of hard-

ware extensions to the abstract LWDF methodology makes them

readily retargetable to other HDLs, such as VHDL and SystemC.

A preliminary version of this paper has been presented in [9] .

This paper goes beyond the contributions presented in [9] by op-

timizing the dataflow edge module (DEM) design, and providing

an improved clock gating mechanism that we implemented in the

deep neural network (DNN) application, where the clock gating

technique is applied not only to actors but also to synchronous

first-in first-out (FIFO) channels. Details on these extensions are

presented in Section 4 , and in Section 5 , the simulation results of

the four DNN designs are updated (compared to the correspond-

ing results in [9]) based on incorporation of the new DEM design,

and the new clock gated application design. Additionally, we have

extended the presentation of our DNN case study with details on

hardware actor profiling, which provides further insight into the

characteristics of alternative low power solutions.

The remainder of this paper is organized as follows.

Section 2 provides background on dataflow models of compu-

tation. In Section 3 , we describe the LWDF-V methodology and

its implementation in the lightweight dataflow environment

(LIDE). In Section 4 , we present the proposed integration of low

power techniques with the LWDF-V methodology. In Section 5 ,

we demonstrate a DNN application for vehicle classification that

is designed and optimized using this new low power form of

LWDF-V.

2. Background

In dataflow models of computation for embedded signal pro-

cessing, DSP systems are modeled as directed graphs, which are

composed of nodes (actors) representing computational functions

and edges representing communication channels between actors

(e.g., see [4]). Each actor executes as a sequence of discrete units of

computation, called firings . During each firing the actor, according

to the adopted dataflow model, consumes one or more data tokens

from its input edges, performs the computations associated with

the firing, and produces one or more data tokens onto its output

edges. Edges buffer data in a first-in first-out (FIFO) fashion. Some

well-defined amount of data is encapsulated in a token as it passes

from the output edge of one actor to the input edge of another.

The conditions under which an actor can fire are called the firing

rules of the actor (e.g., see [22]). Alternative forms of dataflow in

general differ in the classes of firing rules that actors employ.

2.1. Overview of dataflow models

Enable-invoke dataflow (EIDF) is a general dataflow model of

computation that supports dynamic dataflow behavior in ac-

tors [23] . In EIDF, each actor is divided into a set of modes , where

each mode, when it executes, has static dataflow rates — i.e., each

mode has a fixed consumption rate and production rate associated

with each input and output port, respectively. Dynamic dataflow

behavior can be achieved by switching among different modes of

the same actor that have different dataflow (production or con-

sumption) rates associated with the same port. The firing rule for

a given EIDF actor is dependent on the current mode M of the ac-

tor. Intuitively, this mode-dependent firing rule is that there must

be sufficient data on the actor input buffers (as determined by the

fixed consumption rates associated with M), and sufficient vacant

space on the actor output buffers (as determined by the produc-

tion rates associated with M). For more details on the semantics of

EIDF, we refer the reader to [23] .

The specification of an EIDF actor includes a method called

the enable method , which checks whether there is sufficient data

available on the actor’s input ports and sufficient data available

on its output ports to fire the actor in its current mode. The en-

able method returns a Boolean result that is true-valued when

the aforementioned availability conditions are met. Each EIDF ac-

tor also has an invoke method, which executes the actor operation

Download English Version:

https://daneshyari.com/en/article/4956194

Download Persian Version:

https://daneshyari.com/article/4956194

Daneshyari.com

https://daneshyari.com/en/article/4956194
https://daneshyari.com/article/4956194
https://daneshyari.com

