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a b s t r a c t 

Dataflow models of computation are capable of providing high-level descriptions for hardware and soft- 

ware components and systems, facilitating efficient processes for system-level design. The modularity 

and parallelism of dataflow representations make them suitable for key aspects of design exploration and 

optimization, such as efficient scheduling, task synchronization, memory and power management. The 

lightweight dataflow (LWDF) programming methodology provides an abstract programming model that 

supports dataflow-based design of signal processing hardware and software components and systems. 

Due to its formulation in terms of abstract application programming interfaces, the LWDF methodology 

can be integrated with a wide variety of simulation- and implementation-oriented languages, and can be 

targeted across different platforms, which allows engineers to integrate dataflow modeling approaches 

relatively easily into existing design processes. Previous work on LWDF techniques has emphasized their 

application to DSP software implementation (e.g., through integration with C and CUDA). In this paper, we 

efficiently integrate the LWDF methodology with hardware description languages (HDLs), and we apply 

this HDL-integrated form of the methodology to develop efficient methods for low power DSP hardware 

implementation. The effectiveness of the proposed LWDF-based hardware design methodology is demon- 

strated through a case study of a deep neural network application for vehicle classification. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Dataflow models of computation are highly suitable to describ- 

ing the functionality of digital signal processing (DSP) applications. 

In dataflow graphs, nodes represent computational components, 

called actors , and edges model channels for point-to-point commu- 

nication between actors. An actor can be executed whenever it has 

sufficient data on its input ports and sufficient empty space on its 

output ports. 

Dataflow models present an intrinsic modularity that facili- 

tates the composition and portability of computational compo- 

nents (e.g., see [1,2] ), being effective in terms of retargetability of 

design processes across different platforms (e.g., see [3] ). Further- 
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more, dataflow models facilitate exploration of optimization tech- 

niques to achieve efficient implementations of DSP systems (e.g., 

see [4–6] ). 

Lightweight dataflow ( LWDF ) is a programming methodology 

that allows designers to systematically integrate and experiment 

with dataflow modeling approaches in the context of existing de- 

sign processes [1] . LWDF is “lightweight” in the sense that the pro- 

gramming model is designed to be minimally intrusive on existing 

design methodologies and processes, and requires minimal depen- 

dence on specialized tools or libraries. 

Previous work on LWDF techniques has emphasized their ap- 

plication to DSP software implementation (e.g., through integra- 

tion with C and CUDA, as presented in [7,8] ). In [9] , to the best 

of our knowledge, we presented the first study that deeply inte- 

grates LWDF techniques with hardware description language (HDL) 

programming, and that provides a complex application study in- 

volving LWDF-based digital hardware design and optimization. 

There is a wide variety of model-based design methodologies 

and corresponding tools for digital hardware implementation. For 
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example, the Compaan and Laura tools for HDL code synthesis 

from Kahn process networks (KPNs) are presented in [10] . The CAL 

programming language and the Orcc toolset provide a novel envi- 

ronment for implementing dataflow programs in hardware [11,12] . 

The CAPH language and framework represent another recent effort 

to generate HDL from a dataflow language [13] . In [14] , methodolo- 

gies for hardware synthesis of pipelined dataflow graph structures 

are developed to enable high-level, hardware-oriented dataflow 

graph optimization. Nezan et al. [15] present an integrated design 

flow and corresponding tools that automatically optimize dataflow 

specifications to generate HDL designs. The Multi-Dataflow Com- 

poser (MDC) tool, a framework for the automatic creation of multi- 

functional reconfigurable platforms, performs a complete design 

space exploration, evaluating the trade-off among resource usage, 

power consumption and operating frequency [16] . 

Some relevant works have explored the deployment of mul- 

tiple clock domains and clock gating techniques in conjunction 

with dataflow-based digital hardware implementations: Brunet 

et al. propose a design methodology to partition streaming appli- 

cations onto a multi-clock-domain architecture [17] , and Xronos, 

a high-level synthesis tool for FPGA platforms, adopts a coarse- 

grained clock gating strategy [18] . The MDC tool has the capabil- 

ities of identifying disjointed logic regions, and automatically ap- 

plying coarse grain clock and power gating techniques to these re- 

gions [19,20] . 

Generally speaking, these methodologies and tools are limited 

by the language used to describe the adopted dataflow description 

or by the generated HDL, which can be target dependent. Further- 

more, these tools support the user-friendly application of existing 

design optimization techniques, rather than the rapid prototyping 

of new techniques. Automatically targeting a new language, plat- 

form or design optimization technique can require significant ef- 

fort in development and maintenance of graph analysis and code 

generation functionality. Such effort can sometimes be justified for 

models and design approaches that are relatively mature. However, 

for experimental methods or methods that are highly specialized 

to a particular application, such effort is costly. 

LWDF helps to address this gap by providing a compact set 

of APIs that can be used to incorporate advanced dataflow tech- 

niques in a manner that does not require development and main- 

tenance of automation tools. Rather than being focused on automa- 

tion, LWDF is designed to help the designer architect an efficient 

dataflow-based implementation and iteratively experiment with it. 

This capability has been highly useful in the work that we are 

reporting on in this paper, as it has allowed us to rapidly incor- 

porate and experiment with advanced power optimization tech- 

niques in the framework of a systematic dataflow-based design 

methodology. 

At the same time, because the LWDF APIs are based on formal 

dataflow principles, LWDF-based implementations can be well- 

suited as a target for automated synthesis and code generation 

tools. For example, LWDF APIs for CUDA and C have been targeted 

in the DIF-GPU tool for automated synthesis of hybrid CPU/GPU 

implementations [21] . Indeed, development of automation support 

for the models and methods introduced in this paper is a useful 

direction for future work. 

In summary, the work in this paper emphasizes the applica- 

tion of DSP-oriented dataflow methods in terms of compact and 

retargetable APIs, and also emphasizes the rigorous integration of 

power-management within the proposed APIs. While the design 

techniques developed in this paper are demonstrated concretely in 

the context of the Verilog HDL, their formulation in terms of hard- 

ware extensions to the abstract LWDF methodology makes them 

readily retargetable to other HDLs, such as VHDL and SystemC. 

A preliminary version of this paper has been presented in [9] . 

This paper goes beyond the contributions presented in [9] by op- 

timizing the dataflow edge module (DEM) design, and providing 

an improved clock gating mechanism that we implemented in the 

deep neural network (DNN) application, where the clock gating 

technique is applied not only to actors but also to synchronous 

first-in first-out (FIFO) channels. Details on these extensions are 

presented in Section 4 , and in Section 5 , the simulation results of 

the four DNN designs are updated (compared to the correspond- 

ing results in [9] ) based on incorporation of the new DEM design, 

and the new clock gated application design. Additionally, we have 

extended the presentation of our DNN case study with details on 

hardware actor profiling, which provides further insight into the 

characteristics of alternative low power solutions. 

The remainder of this paper is organized as follows. 

Section 2 provides background on dataflow models of compu- 

tation. In Section 3 , we describe the LWDF-V methodology and 

its implementation in the lightweight dataflow environment 

(LIDE). In Section 4 , we present the proposed integration of low 

power techniques with the LWDF-V methodology. In Section 5 , 

we demonstrate a DNN application for vehicle classification that 

is designed and optimized using this new low power form of 

LWDF-V. 

2. Background 

In dataflow models of computation for embedded signal pro- 

cessing, DSP systems are modeled as directed graphs, which are 

composed of nodes (actors) representing computational functions 

and edges representing communication channels between actors 

(e.g., see [4] ). Each actor executes as a sequence of discrete units of 

computation, called firings . During each firing the actor, according 

to the adopted dataflow model, consumes one or more data tokens 

from its input edges, performs the computations associated with 

the firing, and produces one or more data tokens onto its output 

edges. Edges buffer data in a first-in first-out (FIFO) fashion. Some 

well-defined amount of data is encapsulated in a token as it passes 

from the output edge of one actor to the input edge of another. 

The conditions under which an actor can fire are called the firing 

rules of the actor (e.g., see [22] ). Alternative forms of dataflow in 

general differ in the classes of firing rules that actors employ. 

2.1. Overview of dataflow models 

Enable-invoke dataflow ( EIDF ) is a general dataflow model of 

computation that supports dynamic dataflow behavior in ac- 

tors [23] . In EIDF, each actor is divided into a set of modes , where 

each mode, when it executes, has static dataflow rates — i.e., each 

mode has a fixed consumption rate and production rate associated 

with each input and output port, respectively. Dynamic dataflow 

behavior can be achieved by switching among different modes of 

the same actor that have different dataflow (production or con- 

sumption) rates associated with the same port. The firing rule for 

a given EIDF actor is dependent on the current mode M of the ac- 

tor. Intuitively, this mode-dependent firing rule is that there must 

be sufficient data on the actor input buffers (as determined by the 

fixed consumption rates associated with M ), and sufficient vacant 

space on the actor output buffers (as determined by the produc- 

tion rates associated with M ). For more details on the semantics of 

EIDF, we refer the reader to [23] . 

The specification of an EIDF actor includes a method called 

the enable method , which checks whether there is sufficient data 

available on the actor’s input ports and sufficient data available 

on its output ports to fire the actor in its current mode. The en- 

able method returns a Boolean result that is true-valued when 

the aforementioned availability conditions are met. Each EIDF ac- 

tor also has an invoke method, which executes the actor operation 
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