
ARTICLE IN PRESS

JID: SYSARC [m5G; January 12, 2017;18:33]

Journal of Systems Architecture 0 0 0 (2017) 1–11

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Architecting resilient computing systems: A component-based

approach for adaptive fault tolerance

Miruna Stoicescu

1 , Jean-Charles Fabre, Matthieu Roy

∗

LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

a r t i c l e i n f o

Article history:

Received 20 April 2016

Revised 29 November 2016

Accepted 21 December 2016

Available online xxx

Keywords:

Dependability

Adaptivity

Fault tolerance

Component-based middleware

Runtime reconfiguration

a b s t r a c t

Evolution of systems during their operational life is mandatory and both updates and upgrades should not

impair their dependability properties. Dependable systems must evolve to accommodate changes, such

as new threats and undesirable events, application updates or variations in available resources. A system

that remains dependable when facing changes is called resilient. In this paper, we present an innovative

approach taking advantage of component-based software engineering technologies for tackling the on-

line adaptation of fault tolerance mechanisms. We propose a development process that relies on two

key factors: designing fault tolerance mechanisms for adaptation and leveraging a reflective component-

based middleware enabling fine-grained control and modification of the software architecture at runtime.

We thoroughly describe the methodology, the development of adaptive fault tolerance mechanisms and

evaluate the approach in terms of performance and agility.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dependable systems are becoming increasingly complex and

their capacity to evolve in order to efficiently accommodate

changes is a requirement of utmost importance. Changes have

different origins, such as fluctuations in available resources, addi-

tional features requested by users, environmental perturbations...

All changes that may occur during service life are rarely foresee-

able when designing the system. Dependable systems must cope

with changes while maintaining their ability to deliver trustworthy

services and their required attributes, e.g., availability, reliability,

integrity [1] .

A lot of effort has been put into building applications that

can adapt themselves to changing conditions. A rich body of

research exists in the field of software engineering consisting of

concepts, tools, methodologies and best practices for designing

and developing adaptive software [2] . For instance, agile soft-

ware development approaches [3] emphasize the importance of

accommodating change during the lifecycle of an application at a

reasonable cost, rather than striving to anticipate an exhaustive set

of requirements. Component-based approaches [4] separate service

interfaces from their actual implementation in order to increase

flexibility, evolvability and reuse. Although dependable systems

∗ Corresponding author.

E-mail address: roy@laas.fr (M. Roy).
1 EUMETSAT (European Organisation for the Exploitation of Meteorological Satel-

lites)

could benefit from these advancements in order to become more

flexible and adaptive, very little has been done in this direction for

now. In this paper, we describe an innovative approach for tackling

on-line adaptation of dependability mechanisms that leverages

component-based software engineering technologies. Component-

based fault tolerance mechanisms can be easily updated through

transition packages.

The paper is organized as follows. Section 2 presents the

context and motivation of our work. Section 3.1 briefly describes

the resilient system architecture we consider; next, we describe a

set of Fault Tolerance Mechanisms (FTMs) and analyze transitions

between them in Section 3.2 . Section 4 presents the process of

designing FTMs for subsequent adaptation. In Section 4.4 , we

detail the practical implementation of FTMs on top of a reflective

component-based support and in Section 5 , we describe the imple-

mentation of on-line transitions between FTMs. Next, we evaluate

our approach in Section 6 . In Section 7 , we discuss related work

and in Section 8 we present the lessons learned and conclude.

2. Problem statement

Resilient computing refers to dependability in the presence of

changes due to system evolution [5] . Our work focuses on Fault

Tolerance Mechanisms (FTMs) that can be influenced by changes

occurring in the system or in its environment. Ideally, fault-

tolerant applications consist of two interconnected abstraction

layers. The first one (the base level) contains the business logic

that implements the functional requirements . The second one (the

http://dx.doi.org/10.1016/j.sysarc.2016.12.005

1383-7621/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: M. Stoicescu et al., Architecting resilient computing systems: A component-based approach for adaptive fault

tolerance, Journal of Systems Architecture (2017), http://dx.doi.org/10.1016/j.sysarc.2016.12.005

http://dx.doi.org/10.1016/j.sysarc.2016.12.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:roy@laas.fr
http://dx.doi.org/10.1016/j.sysarc.2016.12.005
http://dx.doi.org/10.1016/j.sysarc.2016.12.005

2 M. Stoicescu et al. / Journal of Systems Architecture 0 0 0 (2017) 1–11

ARTICLE IN PRESS

JID: SYSARC [m5G; January 12, 2017;18:33]

meta level) contains fault tolerant mechanisms and is attached to

the first one through clearly identified hooks. As the development

of a fault-tolerant application implies different roles/stakeholders

(application developer(s), safety expert, integrator), separation of

concerns is a key concept. Separation of concerns has some limit

since fault tolerance strategies often depend on the semantics of

the business logic. However, hooks can be defined to externalize

some “application defined assertions” used to parameterize fault

tolerance mechanisms. In any case, the concept of separation

of concerns is essential to implement adaptive fault tolerance

without impacting deeply the business logic.

Among the well-established and documented FTMs, e.g., [6,7] ,

the choice of an appropriate FTM for a given application de-

pends on the values of several parameters. We identified three

classes of parameters: fault tolerance requirements, application

characteristics and available resources.

• Fault tolerance requirements (FT). This class of parameters

contains the considered fault model. A fault model determines the

category of FTM to be used (e.g., simple replication or diversifi-

cation). Our fault model classification is well-known [1] , dealing

with crash faults, value faults and development faults. We focus

on hardware faults (permanent and transient physical faults) but

the approach can be extended to other FTMs.

• Application characteristics (A). The characteristics that have

an impact on the choice of an FTM are application statefulness,

state accessibility and determinism. State accessibility is essential

for checkpointing-based fault tolerance strategies. Determinism

refers here to behavioural determinism, i.e., the same inputs

produce the same outputs in the absence of faults, mandatory for

active replication.

• Resources (R). FTMs require resources in terms of CPU, bat-

tery life/energy, bandwidth, etc. A cost function can be associated

to each FTM based on the values of such parameters. For a given

set of resources, several mechanisms can be used with different

trade-offs (e.g., more CPU, less bandwidth).

The first two parameters FT and A correspond to assumptions

to be considered for the selection of an appropriate mechanism

and to determine its validity. The resource dimension R states the

amount of resources needed to accept a given solution according

to system resources availability.

In practice, based on the values of (FT,A,R) set at design time,

an FTM is attached to an application when the system is installed

for the first time. As far as resilient computing [5] is concerned,

the challenge lies in maintaining consistency between the FTM(s)

and the non-functional requirements despite variations of the

parameters at runtime, e.g.:

• new threats/faults and physical perturbations such as electro-

magnetic interferences trigger variations of FT ;

• the introduction of new versions of applications or modules

may trigger variations of A ;

• resource loss or addition of hardware components imply vari-

ations of R .

If the FTM is inconsistent with the current (FT,A,R) values, it

will most likely fail to tolerate the faults the system is confronted

with. Therefore, a transition towards a new FTM is required before

the current FTM becomes invalid, which is possible in Adaptive

Fault Tolerance (AFT).

On-line adaptation of FTMs has attracted research efforts for

some time now because dependable systems cannot be fully

stopped for performing off-line modifications. However, most

of the proposed solutions [8–10] tackle adaptation in a prepro-

grammed manner: all FTMs necessary during the service life of

the system must be known and deployed from the beginning and

adaptation consists in choosing the appropriate execution branch

or tuning some parameters.

Nevertheless, predicting all events and threats that a system

may encounter throughout its service life and making provisions

for them is obviously impossible.

This approach is of interest for long-lived space systems (satel-

lites and deep-space probes) and for automotive applications

regarding over-the-air software updates , a very important trend in

the automotive industry today.

In this context, we propose an alternative to preprogrammed

adaptation that we denote agile adaptation of FTMs (the term “ag-

ile” is inspired from agile software development). Agile adaptation

of FTMs enables their systematic evolution: new FTMs can be

designed off-line at any point during service life and integrated

on-line in a flexible manner, with limited impact on the existing

software architecture. Our approach for the agile adaptation of

FTMs leverages advancements in the field of software engineering

such as Component-Based Software Engineering (CBSE) technolo-

gies [4] , Service Component Architecture [11] and Aspect-Oriented

Programming [12] . Using such concepts and technologies, we

design FTMs as brick-based assemblies (similar to “Lego” con-

structions) that can be methodically modified at runtime through

fine-grained modifications affecting a limited number of bricks.

This approach maximizes reuse and flexibility, contrary to mono-

lithic replacements of FTMs found in related work, e.g., [8–10] . It is

worth noting that, whatever the approach is (pre-programmed or

agile), when the FTM evolution goes outside the foreseen bound-

aries of the FTM loaded into the system, the system may fail. The

benefits of the proposed agile approach is to provide means to

react more quickly and to simplify updates of loaded FTMs.

Summary of contributions. In this paper, after a short de-

scription of the resilient system architecture, we describe our

methodology for agile adaptation of FTMs and its results, focussing

on the following three key contributions:

• A “design for adaptation” approach of a set of FTMs, based on

a generic execution scheme.

• A component-based architecture of the considered FTMs and

fine-grained on-line transitions between them.

• Illustration of on-line FTM adaptation through several transi-

tion scenarios.

3. Resilient system design

3.1. Architecture

The core objective of a resilient system is to guarantee the

consistency of FTMs attached to applications according to major

assumptions regarding the fault model and the application charac-

teristics. First, this means identifying the link between applications

and FTMs, and, more importantly, dynamically adapting FTMs ac-

cording to operational conditions at runtime. As soon as FTMs are

developed as assemblies of Lego bricks, it becomes easier to adjust

their configuration by removing, adding, modifying individual

bricks. This means that bindings between application and FTMs,

but also inside FTMs can be managed dynamically. At runtime, any

FTM implemented as a graph of Lego bricks is modified on-line

when the FTM configuration is updated. Some Lego bricks can be

uploaded when they are missing, after an off-line development

when the FTM solution does not exist yet. The adaptation is

carried out on-line by a specific service, called Adaptation Engine

(see Fig. 1).

A second important feature of a resilient system, also shown

on Fig. 1 , is the runtime monitoring of the state of the system

according to several view points. This core service of the architec-

ture is called Monitoring Engine . The first conventional role of the

monitoring is to measure resource usage R . The second important

role of the monitoring is to analyze the non-functional behavior

of the system. This task is more complex and requires specific

Please cite this article as: M. Stoicescu et al., Architecting resilient computing systems: A component-based approach for adaptive fault

tolerance, Journal of Systems Architecture (2017), http://dx.doi.org/10.1016/j.sysarc.2016.12.005

http://dx.doi.org/10.1016/j.sysarc.2016.12.005

Download English Version:

https://daneshyari.com/en/article/4956199

Download Persian Version:

https://daneshyari.com/article/4956199

Daneshyari.com

https://daneshyari.com/en/article/4956199
https://daneshyari.com/article/4956199
https://daneshyari.com

