
Journal of Systems Architecture 79 (2017) 31–44

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An efficient approach for the multiprocessor non-preemptive strictly

periodic task scheduling problem

Omar Kermia

CDTA, Algiers, Algeria

a r t i c l e i n f o

Article history:

Received 1 August 2016

Revised 18 April 2017

Accepted 15 July 2017

Available online 19 July 2017

Keywords:

Real-time systems

Schedulability analysis

Strictly periodic tasks

Multiprocessor platform

a b s t r a c t

Strict periodicity constraint is of great importance since it concerns some hard real-time systems where

missing deadlines leads to catastrophic situations. However, the problem of schedulability analysis for

non-preemptive strictly periodic tasks on a multiprocessor platform is even more intractable than the

one with the common periodicity. In order to implement such systems, designers need effective tools

based on fast and near-optimal solutions.

This paper presents a schedulability analysis which results mainly in a, two versions, task assignment

and start-time calculation algorithm. The first one targets the harmonic task periods case while the sec-

ond one targets the non-harmonic task periods case. Each version is based on a sufficient uniprocessor

schedulability test. In addition, for the non-harmonic case which is the most intractable, the uniproces-

sor sufficient schedulability test uses the strictly periodic task utilization factor. This factor stands for the

fraction of time spent to execute a task while its strict periodicity and the ones of the already scheduled

tasks are met. As a result, an efficient and easily implementable scheduling algorithm is proposed which

begins by assigning tasks to processors then attributes a start-time to every task in such a way that strict

periodicity and deadline constraints are met. The effectiveness of the proposed scheduling algorithm, in

both versions, has been shown by a performance evaluation and comparisons with an optimal and a

similar suboptimal solution.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hard real-time problematic is to maintain temporal and func-

tional achievement of system execution. Hard real-time scheduling

has been concerned with providing guarantees for temporal feasi-

bility of task execution whatever the situations. A scheduling algo-

rithm is defined as a set of rules defining the execution of tasks

at system run-time. A schedulability analysis, which determines

whether a set of tasks with parameters describing their temporal

behavior will meet their temporal constraints if executed at run-

time according to rules dictated by the scheduling algorithm. The

result of such a test is typically a yes or a no answer indicating

whether a solution will be found or not. These schemes and tests

demand precise assumptions about task properties, which hold for

the entire system lifetime. Generally, we talk about system failure

when timing constraints are not met. For this very reason, in this

kind of system, timing constraints must be guaranteed to be met.

In addition, real-time systems need to be predictable in order to

guarantee the timeliness of their behavior. Time-predictability is

E-mail addresses: omar.kermia@gmail.com , okermia@cdta.dz

exactly one of the preconditions necessary to verify the correct

operation of a real-time system [1] . While satisfying the timing

constraints of the system, it is also desirable that the system

achieve a high level of processor utilization. Only processing re-

quirements are significant; memory, I/O, and other resource re-

quirements are negligible.

In some hard real-time systems some tasks are repeated ac-

cording to a strict periodicity [2,3] which is more constrained than

the most studied period tasks model initially proposed by Liu

and Layland [4] . Therefore, available results addressing the non-

preemptive periodic scheduling such as in [5–7] are not suitable

for strict periodicity case.

Strictly periodic tasks could be sensors/actuators for which the

relevancy of information they use is linked to the accuracy of the

repetition. Hence, these tasks must be executed following a strict

periodicity [8] . In real-time control systems, one of the conse-

quences of strict periodicity is that the separation between con-

secutive task instance starting times, called sampling interval, be-

comes constant. This stability is synonymous with the control of

jitters which are delays between tasks ready-times and when they

start their execution [9–12] . The fact that we are dealing with pre-

http://dx.doi.org/10.1016/j.sysarc.2017.07.005

1383-7621/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysarc.2017.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.07.005&domain=pdf
mailto:omar.kermia@gmail.com
mailto:okermia@cdta.dz
http://dx.doi.org/10.1016/j.sysarc.2017.07.005

32 O. Kermia / Journal of Systems Architecture 79 (2017) 31–44

emptive scheduling does not affect the latency performance con-

siderably (compared to a non-preemptive scheduling) since there

exist some methods allowing minimizing latency which leads to

robust preemptive real-time control systems [13–15] . Also, the

strict periodicity is a part of the constraints in Mixed Criticality

System such as with TTEthernet protocol [16] or IMA “Integrated

Modular Avionic” based systems [17] .

In this work, we are interested in an effective off-line subopti-

mal scheduling of a strictly periodic real-time task set on a num-

ber of processors. This requires the study of the schedulability of

such tasks on a single processor in order to find how to determine

whether a task set is schedulable on a processor in a reasonable

amount of time. Then, based on the study results, the goal is to

develop a scheduling algorithm that returns the start-time exe-

cution of every task and the processor on which it will be exe-

cuted in such a way that strict periodicity of all tasks is met. To

this end, we propose to distinguish between the harmonic and the

non-harmonic period cases seeing that the harmonic one stands

for a less intractable problem. This allows getting a harmonic task

scheduling algorithm with less complexity than that of the general

case. For the non-harmonic case, we propose to assign tasks and

give them start-times within two successive processes. Indeed, for

scheduling strictly periodic tasks, we believe that it is more prof-

itable to begin by finding a feasible assignment for tasks while

minimizing the number of used processors and then attribute the

suitable start-times. Proceeding in this way reduces the complexity

of the scheduling algorithm but, nevertheless, requires a schedu-

lability condition that does not involve start-time parameter. In

addition, the proposed tasks assignment seeks to divide the task

set into feasible subsets; and tasks within the same subset are as-

signed to the same processor.

The first contribution of this paper is a sufficient schedulabil-

ity condition followed by a polynomial multiprocessor tasks as-

signment and start-time calculation algorithm for harmonic tasks.

Then, to address the non-harmonic case, the strictly periodic task

utilization factor is introduced. It stands for the sum of fractions of

time spent to execute a task in such a way that its strict periodic-

ity and the ones of the already scheduled tasks are met. After that,

based on the proposed factor, a polynomial sufficient schedulabil-

ity condition for the uniprocessor case is introduced such that: (i)

it does not involve tasks start-time and (ii) it has any restriction

about tasks period values. Once the schedulability of a task sub-

set is assessed, we propose to compute tasks start-times that fulfill

both strict periodicities and deadlines constraints. The scheduling

algorithm, for non-harmonic tasks, is of pseudo-polynomial com-

plexity; it returns a minimized number of required processors and

the assignment of every task (with a start-time) to one of these

processors. In this way, every task’s start-time is computed only

once without changing any already computed task start-time. Fur-

thermore, a performance evaluation including comparisons with

both optimal method and an efficient suboptimal solution is pro-

posed.

This paper is organized as follows. After a review of the related

work in Section 2 , the scheduling problem is formally presented in

Section 3 . Sections 4.1 and 4.2 present the performed schedulabil-

ity analysis and the scheduling algorithm for harmonic and non-

harmonic tasks respectively. Section 5 gives some experimentations

and results. Section 6 finally concludes and gives some perspectives

on future work.

2. Related work

In [3] , Korst et al. showed that the problem of the non-

preemptively scheduling strictly periodic tasks is NP complete in

the strong sense in the case of a single processor.

Fig. 1. Model for a non-preemptive strictly periodic task.

In addition, Kermia and Sorel proposed in [18] a necessary

schedulability condition which was proven to be very restrictive

[19] . Later, Eisenbrand et al. [20] addressed the special case of har-

monic periods, i.e., every period divides all other periods of greater

value. They showed that there exists a 2-approximation for the

minimization of the processors number. Then, Sheikh et al. [17] ad-

dressed the optimal solution by proposing a best-response algo-

rithm based on the game theoretic approach. This work has been

improved by Pira and Artigues [21] by proposing a new method

to compute the best response, and a propagation mechanism for

non-overlapping constraints. More recently, Chen et al. [22] pre-

sented an efficient suboptimal task assignment algorithm which

is based on a uniprocessor schedulability condition which deter-

mines whether a new task can be scheduled on a processor with-

out changing the start-times of the already scheduled tasks and

identifies all valid start-times for the new task if it is schedula-

ble. This uniprocessor schedulability condition takes into account

only tasks whose periods are equal to, or multiples of, either one

of the periods or the Greatest Common Divisor of all periods of the

already scheduled tasks. Zhang et al. [23] tackled the uniprocessor

case by proposing a sufficient test condition to check the feasibility

of a given task set, and returns their start-times.

3. Model

We deal with systems of non-preemptive strictly periodic real-

time tasks which are considered as synchronous since they are all

first activated at the same time t = 0 . Hence, a system consists of

a set of n concrete strictly periodic tasks denoted by � (| �| = n). A

task i denoted by τ i ∈ � is an infinite sequence of jobs denoted by

(τ j
i
, j ≥ 0) where each job is characterized by: an execution start-

time s
j
i
, a strict period T i , an activation time R

j
i

(where ∀ i, R 0
i

=

0), a relative deadline denoted by D

j
i

equal to its period (D

j
i

= T i)

and a worst case execution time C i . As periods are strict then s
j
i
,

the start-time of the j th job of τ i , is given by: s
j
i

= s 0
i

+ j · T i . The

hardware platform is an m identical processors.

Fig. 1 shows an example of a non-preemptive strictly periodic

task scheduling. In addition, we assume time is discrete and clock

ticks are indexed by the natural numbers. Hence, saying that a job

τ j
i

starts at time s
j
i

means that it starts its execution at the start

of the interval [s
j
i
, s

j
i
+ 1) . All tasks are considered as independent

meaning that there are no precedence constraints between tasks.

4. Schedulability analysis

We propose a sufficient schedulability condition and a schedul-

ing algorithm for harmonic and non-harmonic tasks respectively.

4.1. Harmonic tasks

4.1.1. Uniprocessor case

Let us consider a set of harmonic periods tasks � = { τ1 , .., τn } .
Without any loss of generality, harmonic periodic tasks are as-

Download English Version:

https://daneshyari.com/en/article/4956221

Download Persian Version:

https://daneshyari.com/article/4956221

Daneshyari.com

https://daneshyari.com/en/article/4956221
https://daneshyari.com/article/4956221
https://daneshyari.com

