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a b s t r a c t 

In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation 

is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation 

and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the 

two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based 

on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with 

dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic 

aspects, and present different solutions. We also provide a number of basic simulations that indicate that 

the theoretical worst-case bound may be pessimistic. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, a wide range of methodological developments 

on FPGAs aim at combining the performance of an ASIC imple- 

mentation with the flexibility of software realizations. One impor- 

tant development is partial runtime reconfiguration, which allows 

overcoming significant area overhead, monetary cost, higher power 

consumption, or speed penalties (see e.g. [2] ). As described in [3] , 

the idea is to load a sequence of different modules by partial run- 

time reconfiguration. 

In a general setting, we are faced with a dynamically chang- 

ing set of modules, which may be modified by deletions and in- 

sertions. Typically, there is no full a-priori knowledge of the ar- 

rival or departure of modules, i.e., we have to deal with an on- 

line situation. The challenge is to ensure that arriving modules can 

be allocated. Because previously deleted modules may have been 

located in different areas of the layout, free space may be frag- 

mented, making it necessary to relocate existing modules in or- 

der to provide sufficient area. In principle, this can be achieved by 

completely defragmenting the layout when necessary; however, the 

lack of control over the module sequence makes it hard to avoid 
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frequent full defragmentation, resulting in expensive operations for 

insertions if a naïve approach is used. 

Dynamic insertion and deletion are classic problems of Com- 

puter Science. Many data structures (from simple to sophisticated) 

have been studied that result in low-cost operations and efficient 

maintenance of a changing set of objects. These data structures are 

mostly one-dimensional (or even dimensionless) by nature, making 

it hard to fully exploit the 2D nature of an FPGA. In this paper, we 

propose a 2D data structure based on a quadtree for maintaining 

the module layout under partial reconfiguration and reallocation. 

The key idea is to control the overall structure of the layout, such 

that future insertions can be performed with a limited amount of 

relocation, even when free space is limited. 

Our main contribution is to introduce a 2D approach that is 

able to achieve provable constant-factor efficiency for different 

types of relocation cost. To this end, we give detailed mathemat- 

ical proofs for a slightly simplified setting, along with sketches of 

extensions to the more general cases. We also provide basic simu- 

lation runs for various scenarios, indicating the quality of our ap- 

proach. 

The rest of this paper is organized as follows. The following 

Section 2 provides a survey of related work. For better acces- 

siblity of the key ideas and due to limited space, our technical 

description in Section 3, Section 4 , and Section 5 focuses on the 

case of discretized square modules on a quadratic chip area. We 

discuss in Section 6 how general rectangles can be dealt with, 

with corresponding simulations in Section 7 . Along the same lines, 

we do not explicitly elaborate on the dynamic maintenance of the 
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Fig. 1. A quadtree configuration (above) and the corresponding dynamically gener- 

ated quadtree layout below). Gray nodes are occupied, white ones with gray stripes 

fractional, black ones blocked, and white nodes without stripes empty. Maximally 

empty nodes have a circle inscribed. Red lines in the module layout indicate the dy- 

namically produced communication infrastructure, induced by the quadtree struc- 

ture. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

communication infrastructure; see Fig. 1 for the basic idea. Further 

details are left to future work, with groundwork laid in [4] . 

2. Related work 

The problem considered in our paper has a resemblance to 

one-dimensional dynamic storage allocation , in which a sequence 

of storage requests of varying size have to be assigned to a block 

of memory cells, such that the length of each block corresponds to 

the size of the request. In its classic form (without virtual mem- 

ory), this block needs to be contiguous; in our setting, contigu- 

ity of two-dimensional allocation is a must, as reconfigurable de- 

vices do not provide techniques such as paging and virtual mem- 

ory. Once the allocation has been performed, it is static in space: 

after a block has been occupied, it will remain fixed until the cor- 

responding data is no longer needed and the block is released. As 

a consequence, a sequence of allocations and releases can result in 

fragmentation of the memory array, making it hard or even impos- 

sible to store new data. 

On the practical side, classic buddy systems partition the one- 

dimensional storage into a number of standard block sizes and al- 

locate a block in a smallest free standard interval to contain it. 

Differing only in the choice of the standard size, various systems 

have been proposed [5–9] . Newer approaches based on cache- 

oblivious structures in memory hierarchies include Bender et al. 

[10,11] . Theoretical work on one-dimensional contiguous allocation 

includes Bender and Hu [12] , who consider maintaining n ele- 

ments in sorted order, with not more than O ( n ) space. Bender et al. 

[13] aim at reducing fragmentation when maintaining n objects 

that require contiguous space. Fekete et al. [3] study complexity 

results and consider practical applications on FPGAs. Reallocations 

have also been studied in the context of heap allocation. Bender- 

sky and Petrank [14] observe that full compaction, i.e., creating a 

contiguous block of free space on the heap, is prohibitively expen- 

sive and consider partial compaction. Cohen and Petrank [15] ex- 

tend these to practical applications. Bender et al. [16] describe a 

strategy that achieves good amortized movement costs for reallo- 

cations, where allocated blocks can be moved at a cost to a new 

position that is disjoint from with the old position. Another paper 

by the same authors [17] deals with reallocations in the context 

of scheduling. Examples for packing problems in applied computer 

science come from allocating FPGAs. Fekete et al. [18] examined a 

problem dealing with the allocation of different types of resources 

on an FPGA that had to satisfy additional properties. For example, 

to achieve specified clock frequencies diameter restrictions had to 

be obeyed by the packing. The authors were able to solve the prob- 

lem using integer linear programming techniques. 

Over the years, a large variety of methods and results for allo- 

cating storage have been proposed. The classical sequential fit al- 

gorithms, First Fit, Best Fit, Next Fit and Worst Fit can be found in 

Knuth [19] and Wilson et al. [20] . These are closely related to prob- 

lems of offline and online packing of two-dimensional objects. One 

of the earliest considered packing variants is the problem of find- 

ing a dense packing of a known set of squares for a rectangular 

container; see Moser [21] , Moon and Moser [22] and Kleitman and 

Krieger [23] , as well as more recent work by Novotný [24,25] and 

Hougardy [26] . There is also a considerable number of other re- 

lated work on offline packing squares, cubes, or hypercubes; see 

[27–29] for prominent examples. The online version of square pack- 

ing has been studied by Januszewski and Lassak [30] and Han 

et al. [31] , with more recent progress due to Fekete and Hoffmann 

[32,33] . A different kind of online square packing was considered 

by Fekete et al. [34,35] . The container is an unbounded strip, into 

which objects enter from above in a Tetris-like fashion; any new 

object must come to rest on a previously placed object, and the 

path to its final destination must be collision-free. 

There are various ways to generalize the online packing of 

squares; see Epstein and van Stee [36–38] for online bin packing 

variants in two and higher dimensions. In this context, also see 

parts of Zhang et al. [39] . A natural generalization of online pack- 

ing of squares is online packing of rectangles, which have also re- 

ceived a serious amount of attention. Most notably, online strip 

packing has been considered; for prominent examples, see Azar 

and Epstein [40] , who employ shelf packing, and Epstein and van 

Stee [36] . Offline packing of rectangles into a unit square or rect- 

angle has also been considered in different variants; for examples, 

see [41] , as well as [42] . Particularly interesting for methods for 

online packing into a single container may be the work by Bansal 

et al. [43] , who show that for any complicated packing of rectan- 

gular items into a rectangular container, there is a simpler packing 

with almost the same value of items. 

From within the FPGA community, there is a huge amount of 

related work dealing with problems related to relocation. Becker 

et al. [44] present a method for enhancing the relocability of par- 

tial bitstreams for FPGA runtime configuration, with a special fo- 

cus on heterogeneities. They study the underlying prerequisites 

and technical conditions for dynamic relocation. Gericota et al. 

[45] present a relocation procedure for Configurable Logic Blocks 

(CLBs) that is able to carry out online rearrangements, defragment- 

ing the available FPGA resources without disturbing functions cur- 

rently running. Another relevant approach was given by Compton 

et al. [46] , who present a new reconfigurable architecture design 

extension based on the ideas of relocation and defragmentation. 

Koch et al. [47] introduce efficient hardware extensions to typi- 

cal FPGA architectures in order to allow hardware task preemp- 

tion. These papers do not consider the algorithmic implications 

and how the relocation capabilities can be exploited to optimize 

module layout in a fast, practical fashion, which is what we con- 

sider in this paper. Koester et al. [48] also address the problem of 
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