
Journal of Systems Architecture 75 (2017) 15–25

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An efficient data structure for dynamic two-dimensional

reconfiguration

� , ��

Sándor P. Fekete

∗, Jan-Marc Reinhardt, Christian Scheffer

Department of Computer Science, TU Braunschweig, Germany

a r t i c l e i n f o

Article history:

Received 4 July 2016

Revised 30 January 2017

Accepted 17 February 2017

Available online 27 February 2017

Keywords:

FPGAs

Partial reconfiguration

Two-dimensional reallocation

Defragmentation

Dynamic data structures

Insertions and deletions

a b s t r a c t

In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation

is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation

and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the

two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based

on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with

dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic

aspects, and present different solutions. We also provide a number of basic simulations that indicate that

the theoretical worst-case bound may be pessimistic.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a wide range of methodological developments

on FPGAs aim at combining the performance of an ASIC imple-

mentation with the flexibility of software realizations. One impor-

tant development is partial runtime reconfiguration, which allows

overcoming significant area overhead, monetary cost, higher power

consumption, or speed penalties (see e.g. [2]). As described in [3] ,

the idea is to load a sequence of different modules by partial run-

time reconfiguration.

In a general setting, we are faced with a dynamically chang-

ing set of modules, which may be modified by deletions and in-

sertions. Typically, there is no full a-priori knowledge of the ar-

rival or departure of modules, i.e., we have to deal with an on-

line situation. The challenge is to ensure that arriving modules can

be allocated. Because previously deleted modules may have been

located in different areas of the layout, free space may be frag-

mented, making it necessary to relocate existing modules in or-

der to provide sufficient area. In principle, this can be achieved by

completely defragmenting the layout when necessary; however, the

lack of control over the module sequence makes it hard to avoid

� This work was supported by the DFG Research Group FOR-1800, “Controlling

Concurrent Change”, under contract number FE407/17-1 and 17-2.
�� A preliminary extended abstract of this paper appears in ARCS2016 [1] .

∗ Corresponding author.

E-mail addresses: s.fekete@tu-bs.de (S.P. Fekete), j-m.reinhardt@tu-bs.de (J.-M.

Reinhardt), scheffer@ibr.cs.tu-bs.de (C. Scheffer).

frequent full defragmentation, resulting in expensive operations for

insertions if a naïve approach is used.

Dynamic insertion and deletion are classic problems of Com-

puter Science. Many data structures (from simple to sophisticated)

have been studied that result in low-cost operations and efficient

maintenance of a changing set of objects. These data structures are

mostly one-dimensional (or even dimensionless) by nature, making

it hard to fully exploit the 2D nature of an FPGA. In this paper, we

propose a 2D data structure based on a quadtree for maintaining

the module layout under partial reconfiguration and reallocation.

The key idea is to control the overall structure of the layout, such

that future insertions can be performed with a limited amount of

relocation, even when free space is limited.

Our main contribution is to introduce a 2D approach that is

able to achieve provable constant-factor efficiency for different

types of relocation cost. To this end, we give detailed mathemat-

ical proofs for a slightly simplified setting, along with sketches of

extensions to the more general cases. We also provide basic simu-

lation runs for various scenarios, indicating the quality of our ap-

proach.

The rest of this paper is organized as follows. The following

Section 2 provides a survey of related work. For better acces-

siblity of the key ideas and due to limited space, our technical

description in Section 3, Section 4 , and Section 5 focuses on the

case of discretized square modules on a quadratic chip area. We

discuss in Section 6 how general rectangles can be dealt with,

with corresponding simulations in Section 7 . Along the same lines,

we do not explicitly elaborate on the dynamic maintenance of the

http://dx.doi.org/10.1016/j.sysarc.2017.02.004

1383-7621/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysarc.2017.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.02.004&domain=pdf
mailto:s.fekete@tu-bs.de
mailto:j-m.reinhardt@tu-bs.de
mailto:scheffer@ibr.cs.tu-bs.de
http://dx.doi.org/10.1016/j.sysarc.2017.02.004

16 S.P. Fekete et al. / Journal of Systems Architecture 75 (2017) 15–25

Fig. 1. A quadtree configuration (above) and the corresponding dynamically gener-

ated quadtree layout below). Gray nodes are occupied, white ones with gray stripes

fractional, black ones blocked, and white nodes without stripes empty. Maximally

empty nodes have a circle inscribed. Red lines in the module layout indicate the dy-

namically produced communication infrastructure, induced by the quadtree struc-

ture. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

communication infrastructure; see Fig. 1 for the basic idea. Further

details are left to future work, with groundwork laid in [4] .

2. Related work

The problem considered in our paper has a resemblance to

one-dimensional dynamic storage allocation , in which a sequence

of storage requests of varying size have to be assigned to a block

of memory cells, such that the length of each block corresponds to

the size of the request. In its classic form (without virtual mem-

ory), this block needs to be contiguous; in our setting, contigu-

ity of two-dimensional allocation is a must, as reconfigurable de-

vices do not provide techniques such as paging and virtual mem-

ory. Once the allocation has been performed, it is static in space:

after a block has been occupied, it will remain fixed until the cor-

responding data is no longer needed and the block is released. As

a consequence, a sequence of allocations and releases can result in

fragmentation of the memory array, making it hard or even impos-

sible to store new data.

On the practical side, classic buddy systems partition the one-

dimensional storage into a number of standard block sizes and al-

locate a block in a smallest free standard interval to contain it.

Differing only in the choice of the standard size, various systems

have been proposed [5–9] . Newer approaches based on cache-

oblivious structures in memory hierarchies include Bender et al.

[10,11] . Theoretical work on one-dimensional contiguous allocation

includes Bender and Hu [12] , who consider maintaining n ele-

ments in sorted order, with not more than O (n) space. Bender et al.

[13] aim at reducing fragmentation when maintaining n objects

that require contiguous space. Fekete et al. [3] study complexity

results and consider practical applications on FPGAs. Reallocations

have also been studied in the context of heap allocation. Bender-

sky and Petrank [14] observe that full compaction, i.e., creating a

contiguous block of free space on the heap, is prohibitively expen-

sive and consider partial compaction. Cohen and Petrank [15] ex-

tend these to practical applications. Bender et al. [16] describe a

strategy that achieves good amortized movement costs for reallo-

cations, where allocated blocks can be moved at a cost to a new

position that is disjoint from with the old position. Another paper

by the same authors [17] deals with reallocations in the context

of scheduling. Examples for packing problems in applied computer

science come from allocating FPGAs. Fekete et al. [18] examined a

problem dealing with the allocation of different types of resources

on an FPGA that had to satisfy additional properties. For example,

to achieve specified clock frequencies diameter restrictions had to

be obeyed by the packing. The authors were able to solve the prob-

lem using integer linear programming techniques.

Over the years, a large variety of methods and results for allo-

cating storage have been proposed. The classical sequential fit al-

gorithms, First Fit, Best Fit, Next Fit and Worst Fit can be found in

Knuth [19] and Wilson et al. [20] . These are closely related to prob-

lems of offline and online packing of two-dimensional objects. One

of the earliest considered packing variants is the problem of find-

ing a dense packing of a known set of squares for a rectangular

container; see Moser [21] , Moon and Moser [22] and Kleitman and

Krieger [23] , as well as more recent work by Novotný [24,25] and

Hougardy [26] . There is also a considerable number of other re-

lated work on offline packing squares, cubes, or hypercubes; see

[27–29] for prominent examples. The online version of square pack-

ing has been studied by Januszewski and Lassak [30] and Han

et al. [31] , with more recent progress due to Fekete and Hoffmann

[32,33] . A different kind of online square packing was considered

by Fekete et al. [34,35] . The container is an unbounded strip, into

which objects enter from above in a Tetris-like fashion; any new

object must come to rest on a previously placed object, and the

path to its final destination must be collision-free.

There are various ways to generalize the online packing of

squares; see Epstein and van Stee [36–38] for online bin packing

variants in two and higher dimensions. In this context, also see

parts of Zhang et al. [39] . A natural generalization of online pack-

ing of squares is online packing of rectangles, which have also re-

ceived a serious amount of attention. Most notably, online strip

packing has been considered; for prominent examples, see Azar

and Epstein [40] , who employ shelf packing, and Epstein and van

Stee [36] . Offline packing of rectangles into a unit square or rect-

angle has also been considered in different variants; for examples,

see [41] , as well as [42] . Particularly interesting for methods for

online packing into a single container may be the work by Bansal

et al. [43] , who show that for any complicated packing of rectan-

gular items into a rectangular container, there is a simpler packing

with almost the same value of items.

From within the FPGA community, there is a huge amount of

related work dealing with problems related to relocation. Becker

et al. [44] present a method for enhancing the relocability of par-

tial bitstreams for FPGA runtime configuration, with a special fo-

cus on heterogeneities. They study the underlying prerequisites

and technical conditions for dynamic relocation. Gericota et al.

[45] present a relocation procedure for Configurable Logic Blocks

(CLBs) that is able to carry out online rearrangements, defragment-

ing the available FPGA resources without disturbing functions cur-

rently running. Another relevant approach was given by Compton

et al. [46] , who present a new reconfigurable architecture design

extension based on the ideas of relocation and defragmentation.

Koch et al. [47] introduce efficient hardware extensions to typi-

cal FPGA architectures in order to allow hardware task preemp-

tion. These papers do not consider the algorithmic implications

and how the relocation capabilities can be exploited to optimize

module layout in a fast, practical fashion, which is what we con-

sider in this paper. Koester et al. [48] also address the problem of

Download English Version:

https://daneshyari.com/en/article/4956234

Download Persian Version:

https://daneshyari.com/article/4956234

Daneshyari.com

https://daneshyari.com/en/article/4956234
https://daneshyari.com/article/4956234
https://daneshyari.com

