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Multicore processors are customary within current generation computing systems. The overall concept
of general purpose processing however remains a challenge as architects must provide increased perfor-
mance for each advancing generation without solely relying on transistor scaling and additional cache
levels. Although architects have steered towards heterogeneity to increase the performance and efficiency
for a variety of workloads, the fundamental issue of how a single core’s architecture may be improved and
applied to the multiprocessor domain remains. This work builds upon the concept of Configurable Com-
puting Units (CCU) - a nuanced approach to processor architectures and microarchitectures, employing
reconfigurable datapaths and task-based execution. This work improves upon the efficiency of CCUs by
applying various new design techniques including branch prediction, variable configuration, an OpenMP
programming model, and Berkeley Dwarf testing. Experimental results using Gem5 demonstrate that a
single CCU core can achieve dual-core performance, with a 1.29x decrease in area overhead and 55% of
the power consumption required by a conventional CPU.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

From the dawn of the first in-order microprocessor, every ad-
vancing computing generation has continued to provide its users
with increased performance and enhanced design features. The key
challenge within the current heterogeneous multicore generation
is to exploit both parallel and sequential thread performance with
efficiency. For instance, invoking a system with numerous simple
cores delivers high thread-level parallelism (TLP) with energy and
area efficiency, whereas employing heterogeneous cores may in-
crease TLP and data-level parallelism (DLP) for computationally in-
tensive application phases at the additional cost of area and power
consumption. Although an abundance of TLP and DLP may be ex-
tracted using additional on-chip resources, computing architectures
are still fundamentally limited by the overall Instruction Level Par-
allelism (ILP) and DLP a core may provide [1,2]. Accordingly, the
problem of how a single core’s organization and design may be
improved and applied to the multiprocessor domain remains [3,4].

A common response to increasing general purpose processor
performance has been to invoke dataflow-like execution hardware
within a datapath. Many unconventional computing models have
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addressed such issues by redesigning the processor completely
[5-8]. These dataflow-like processor models are able to increase
single core ILP and DLP, while eliminating unnecessary broad-
casts to improve energy efficiency. In order to support dataflow-
like execution however, these processors require custom compil-
ers and/or languages which lead to several software compatibility
issues. Majority of these processors also possess massive and dis-
tributed grid-like structures causing dependency and communica-
tion issues, while proving problematic for memory accesses which
lie on the outer bounds of a processor.

An FPGA’s bit-level configurable approach requires very fine-
grained application customization leading to significant increases
in design effort and long compilation times, proving problem-
atic for general purpose computing. Coarse-Grained Reconfigurable
Architectures (CGRA) have been proposed to mitigate FPGA ef-
fects, raising configurability to the word-level and reducing the
amount of configuration information necessary for dynamic cus-
tomization in computing systems. These architectures act as ac-
celerators and/or coprocessors to monolithic CPUs, encompassing
several internal computing elements that are interconnected for
dataflow-like execution [9,10]. CGRAs increase performance how-
ever at the expense of ISA, compiler, and microarchitecture modi-
fications to support custom instructions which redirect applicable
code phases to the backend CGRA unit(s). Certain CGRAs also re-
quire custom programming languages, design flows, and OS sup-
port for compatibility with current computing systems [9,11,12].
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To address general purpose single-core issues while maintaining
computing compatibility, previous work has presented the concept
of Configurable Computing Units (CCU) [13,14,22]. As opposed to
using CGRAs with power hungry monolithic cores and additional
reconfigurable support, CCUs redesign the processor and datap-
ath completely by invoking underlying reconfigurable hardware
for enhanced single-thread performance, ILP, DLP, and energy effi-
ciency. Specifically, CCUs are configurable processors that execute
tasks which are generated through logical and physical compila-
tion. Unlike previous work in dataflow based processors, CCUs em-
ploy a logical compiler to maintain compatibility with current soft-
ware, programming languages, and compilers, while using a physi-
cal compiler (PhysC) to exploit information of the underlying hard-
ware architecture and overcome restricted dataflow. This technique
allows CCUs to adapt to a variety of workloads in an efficient man-
ner, acting as a middle layer to maintain compatibility and capture
the needs of the underlying hardware. This work builds upon the
concepts presented in [14] by invoking:

e OpenMP support with a Gem5 simulator implementation

e Branch prediction techniques

« Variable configuration methods for configuration overhead mit-
igation

Revisions and optimizations to PhysC

Berkeley Dwarf benchmark testing to determine the advantages
and limitations of CCU architectures

Effects of load/store unit scalability on the memory system (and
other scalability analyses)

¢ RTL modeling for full processor prototypes

The remainder of this paper is organized as follows:
Section 2 provides background information on CCU proces-
sors. Section 3 expands upon the concepts of logical and physical
compilation. Section 4 discusses details and revisions to the CCU
architecture. Section 5 presents and discusses the experimental
testing and results obtained using the new model, along with the
effects of various CCU configurations and optimizations. Previous
work is overviewed and compared in Section 6, with a conclusion
provided in Section 7.

2. Background

This section provides a brief overview of basic CCU terminolo-
gies in Section 2.1, and overviews the proposed processor’s func-
tionality in Section’s 2.2 and 2.3 using a design flow and execution
example, respectively.

2.1. Definitions

A CCU is a general purpose processing core consisting of vari-
able sized engines. Each engine comprises of unique functional
units (FUs) that are connected through a registerSwitch (rS) inter-
connect as shown in Fig. 1. The interconnect consists of config-
urable rS units which provide distributed storage and single-cycle
multi-hop data communication between dependent instructions.
These characteristics allow the rS interconnect to avoid constant
access to centralized (or outer grid-bound) register files, bypass
networks, and tile-based hotspots, while preventing unnecessary
broadcasts. The engines configure to a general purpose applica-
tion’s communication patterns using the programmable 1S inter-
connect and configuration data generated by the PhysC. Therefore,
each engine is able to temporally configure itself on every clock
cycle during execution to support various data transfers and stor-
ages as required by the application’s task (as opposed to replicat-
ing issue, dispatch, bypass and writeback stages similar to previous
works [5-8]). A banked memory setup holding configuration data
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Fig. 1. Six functional unit (Single) engine CCU architecture.
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Fig. 2. CCU design flow.

is also used in the backend to reduce configuration times and al-
low for reconfigurability in general purpose processors.

2.2. General CCU design flow

The overall CCU design flow is presented in Fig. 2. As typical
of general purpose processors, the first step requires that a bench-
mark be input to the logical compiler (i.e. any standard compiler)
which generates a binary. The binary is then sent to the PhysC
for further processing. Using the binary and information of the
underlying architecture, the PhysC performs 1) task formation, 2)
task and instruction analysis to obtain statistical data and eliminate
data hazards, which is then used for the 3) extraction of producer-
consumer dependencies, 4) selection of the most suitable engine
for task execution, and finally the 5) generation of configuration
data to be used by CCU engines for execution. The generated con-
figuration data is then stored to its respective engine’s banked con-
figuration memory (Fig. 2). Similarly, the addresses used to store
the configuration data are saved to lookup tables in the CCU back-
end, based on task IDs and respective execution engines.
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