JID: SYSARC [m5G;December 20, 2016;13:55]

Journal of Systems Architecture 000 (2016) 1-12

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A selective protection scheme of applications using asymmetrically
reliable caches

Sanem Arslan? Haluk Rahmi Topcuoglu®*, Mahmut Taylan Kandemir¢, Oguz Tosun?

2 Computer Engineering Department, Bogazici University, 34342, Istanbul, Turkey
b Computer Engineering Department, Marmara University, 34722, Istanbul, Turkey
¢ Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA

ARTICLE INFO ABSTRACT

Article history:

Received 30 June 2016
Revised 13 December 2016
Accepted 16 December 2016
Available online xxx

Cache structures in a multicore system are highly vulnerable to soft errors. Enabling fault tolerance capa-
bilities on all cache structures in a system is inefficient in terms of performance and power consumption.
In this study, we propose an enhanced protection mechanism for code segments, which are critical in
terms of reliability, by utilizing asymmetrically reliable cores under performance and power constraints.
Our proposed system contains at least one high-reliability core, which has an ECC-protected L1 cache,
and several low-reliability cores, which have no protection mechanisms. Reliability-based critical code re-
gions are assumed to be high-priority functions, which are extracted by examining the execution time
percentages and the program’s call graph in our framework, statically. Software threads that invoke one
of the high-priority functions are bound to the high-reliability cores dynamically during the execution,
while the threads that execute the remaining functions are bound to the low-reliability cores. As part
of the experimental analysis, our proposed framework is compared with traditional fully protected and
unprotected configurations with respect to performance, power and reliability metrics for various appli-
cations of the benchmarks. Our framework exploits the benefits of providing the reliability-based critical
regions of the applications exclusively by offering notable power and cost savings with close performance
and reliability values for the set of functions reported in the experimental results.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
Asymmetric cores
Selective protection
Reliability

A temporary condition in a semiconductor device, which is
known as a soft error, may corrupt the data stored in the mem-
ory [3]. This kind of error arbitrarily happens and may alter the
data or may halt the execution of the target program. The major

1. Introduction

Modern architectures are vulnerable to soft errors [1] due to
shrinking transistor sizes and high frequencies. Cache structures,

which take large space on a chip compared with other parts, be-
come increasingly susceptible to soft errors [1]. These types of er-
rors might affect the target application dramatically. For instance, a
single transient error on a safety-critical application such as a pro-
gram that controls a nuclear power plant or a missile may result
in a disaster. On the other hand, the consequence of a soft error
on a molecular dynamics application with self-correcting capabil-
ity (i.e., one that uses iterative solvers) may increase the execution
time noticeably in spite of the fact that the application still finishes
successfully [2]. For this reason, reliability might be a primary met-
ric for some applications in hardware and software designs.

* Corresponding author.
E-mail addresses: sanem.arslan@boun.edu.tr (S. Arslan), haluk@marmara.edu.tr
(H.R. Topcuoglu), kandemir@cse.psu.edu (M.T. Kandemir), tosuno@boun.edu.tr (O.
Tosun).

http://dx.doi.org/10.1016/j.sysarc.2016.12.004
1383-7621/© 2016 Elsevier B.V. All rights reserved.

reasons for this type of error include alpha particles, high-energy
cosmic rays and induced electrical noise from a power supply [3].

Error Correcting Code (ECC) is a commonly used technology to
protect cache memories. Single Error Correction Double Error De-
tection (SEC-DED) technology can correct single-bit errors and de-
tect two-bit errors. Prior research applies fault tolerance strategies
unselectively to all caches, which results in inefficient performance,
power consumption and cost. The goal of our study is thus to pro-
vide a reliability framework by utilizing adequate extra hardware
under performance and power constraints. The main idea of our
approach is to extract the code segments that are critical in terms
of reliability in an application and map the application threads to
the asymmetrically reliable cores according to their needs.

A chip multiprocessor framework, which contains at least one
high-reliability core and several low-reliability cores, was pro-
posed and evaluated in our recent study [4]. High-reliability cores
provide ECC protection on their L1 instruction and data caches.

Please cite this article as: S. Arslan et al., A selective protection scheme of applications using asymmetrically reliable caches, Journal of
Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.004



http://dx.doi.org/10.1016/j.sysarc.2016.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:sanem.arslan@boun.edu.tr
mailto:haluk@marmara.edu.tr
mailto:kandemir@cse.psu.edu
mailto:tosuno@boun.edu.tr
http://dx.doi.org/10.1016/j.sysarc.2016.12.004
http://dx.doi.org/10.1016/j.sysarc.2016.12.004

JID: SYSARC

[m5G;December 20, 2016;13:55]

2 S. Arslan et al./Journal of Systems Architecture 000 (2016) 1-12

Conversely, low-reliability cores do not provide any protection
mechanism. In this paper, we improve our framework by extract-
ing the reliability-based critical code regions of the applications by
utilizing execution time percentages and the program'’s call graph,
statically. We first profile the applications to determine functions
with higher priority. Then, these high-priority functions are pro-
tected more conservatively than the other functions by utilizing
asymmetrically reliable cores.

In this paper, a comparative study is performed to show the ef-
ficiency of our framework by using a diverse set of applications
from benchmarks. We report the performance, power consump-
tion and reliability results of different applications with our pro-
posed framework compared with traditional caches. Our experi-
mental evaluation shows that our proposed approach takes advan-
tage of protecting only functions with higher priority. Our frame-
work based on asymmetrically reliable caches presents compara-
ble performance and reliability results with fully protected caches,
while providing lower power consumption and cost values for a set
of functions.

The remainder of this paper is organized as follows. We discuss
related work in Section 2. We present the method used to extract
the reliability-based critical regions of applications in Section 3.
The properties of our approach (i.e., the architecture and execution
model details) are also presented in the same section. The experi-
mental setup used in our evaluations and results from our experi-
mental analysis are presented in Section 4. We conclude the paper
in Section 5.

2. Related work

Hardware and software-based reliability approaches are the
most common studies in the literature. The physical replication
of hardware units is a common method for hardware-based tech-
niques [5]. ECC-based techniques are designed variously to pro-
vide protected cache memories. Variable-Strength Error Correcting
Codes (VS-ECC) [6] are examples of where ECC strength is changed
in diverse cache lines by online testing. In another study, Hi-ECC
provides protection at coarse granularity by decreasing the cost of
strong ECC [7]. Virtualized ECC [8] provides flexible memory pro-
tection by storing the correcting part of the check codes in the
main memory. In the case of an error, their approach re-fetches
the additional correction resource.

Software-based techniques provide solutions at the software-
level by adding instructions into the initial program. Information,
data and time redundancy are common methods used at this level.
Zhao et al. [9] provide adaptive replication to maintain data re-
liability in shared multicore caches. In several studies, operating
system data structures are protected by software-based fault toler-
ance [10], and checkpoint recovery [11].

On the other hand, cross-layer approaches which offer archi-
tecture- and application-level solutions to the reliability problem
are presented in the literature [12]. Hardware faults are recovered
at the software-level in Relax [13], where vulnerable code regions
are extracted. When a fault occurs, these regions are repaired by
either re-executing or ignoring the output of that region. Vulnera-
ble code regions are selected based on discarding the calculations
in the case of a fault. Sampson et al. [14] offer a programming
model, named Ener], in which the user classifies application data
as approximate or critical. In this study, calculations on approxi-
mate data are ensured by using low-reliable, low-energy hardware
components; and computations on critical data are ensured by us-
ing high-reliable, high-energy components. A framework that cat-
egorizes application data as critical or non-critical is proposed by
Arslan et al. [15]. They offer a protection mechanism that utilizes
asymmetrically reliable cores to protect critical data.

In the programming model proposed by Carbin et al. [16], the
user can figure out reliability issues at the application-level. They
provide probabilistic hardware models to perform these require-
ments, executing on unreliable hardware. Chisel [17], in another
study, picks the reliable operations and data automatically. Leem
et al. [18] propose an error resilient system architecture which pro-
vides a reliable processor to manage algorithmic flow and a set of
unreliable processors to execute slave tasks. In this study, applica-
tion source code has to be rewritten and the usage of reliable core
is effective by utilizing many parallel threads. In another study,
Rehman et al. [19] provide a system that chooses a task among
diverse alternatives and utilizes error recovery cores asymmetri-
cally. Low-robust tasks are bound to the reliable cores and high-
robust tasks are bound to the unreliable cores. They also provide
a compiler-based solution that changes the software to decrease
the vulnerability of critical instructions on unprotected hardware.
A protection framework for inter-thread communications is pro-
posed by Yetim et al. [20]. Their system converts possible fatal
communication errors into data errors by utilizing application-level
information. A model-driven framework for fault-tolerant embed-
ded systems is proposed in another study [21]. Their system per-
forms design space exploration with reliability requirements by ob-
taining the application description and underlying platform.

Studies have also examined asymmetric multicore architectures.
Suleman et al. [22] offer asymmetric CMPs to execute critical sec-
tions faster. A large core (a high-performance core) that executes
critical sections to preserve the mutual exclusion property faster,
while several smaller cores (low-performance cores) execute the
remaining instructions. Application threads visit the large core to
execute critical sections by running faster. This approach decreases
the waiting time of the threads for the critical sections.

Asymmetric multicore architectures are also studied in terms
of reliability. Ungsunan et al. [23] offer a multicore system that
differs in fault tolerant hardware used in cores. Their goal is to
categorize software applications as critical or non-critical and to
run critical applications on higher-reliability cores. They determine
the criticality of the applications in advance, and the applications
continue running on higher-reliability cores until they finish. Luo
et al. [24] offer the idea of heterogeneous-reliability memory. In
this study, application data is categorized based on error tolerance
and they store less vulnerable data on lowly protected memory
and more vulnerable data on highly protected memory. Their work
separates the memory based on application data to decrease the
memory cost of data servers.

Several studies extract critical code regions in an application.
Burtscher et al. [25] assume that the code regions that have higher
execution time percentages are more critical than the other parts.
Subotic et al. [26] claim that the code regions that could be im-
proved with performance optimizations and those that have max-
imum speed up in the case of optimizations are selected as the
most significant regions. Carbin et al. [27] extract the critical
and forgiving regions in an application by utilizing input fuzzing
methods. They give different inputs to the program and deter-
mine critical code regions depending on the program path. Duque
et al. [28] propose a system that extracts the task vulnerability and
criticality metrics specific to an application by examining ready
task graphs, statically.

There are considerable differences between our framework and
the related work presented in this section. In our framework, the
high-reliability cores are not reserved for a specific process or
thread. Various threads may utilize the high-reliability cores dur-
ing the execution. In this way, the dynamic allocation of applica-
tion threads and a scheduling technique are required in our sys-
tem. Additionally, our proposed system depends on the individual
cache structures of cores as opposed to external storage. On the
other hand, although we adapted the methods proposed in [28] to

Please cite this article as: S. Arslan et al., A selective protection scheme of applications using asymmetrically reliable caches, Journal of
Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.12.004



http://dx.doi.org/10.1016/j.sysarc.2016.12.004

Download English Version:

https://daneshyari.com/en/article/4956240

Download Persian Version:

https://daneshyari.com/article/4956240

Daneshyari.com


https://daneshyari.com/en/article/4956240
https://daneshyari.com/article/4956240
https://daneshyari.com

