
ARTICLE IN PRESS

JID: SYSARC [m5G; December 10, 2016;10:33]

Journal of Systems Architecture 0 0 0 (2016) 1–16

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Trade-offs of certified fixed-point code synthesis for linear algebra

basic blocks

Matthieu Martel a , Amine Najahi b , c , d , Guillaume Revy

b , c , d , ∗

a University Perpignan Via Domitia, Laboratoire LAMPS, F-66860, Perpignan, France
b University Perpignan Via Domitia, DALI, F-66860, Perpignan, France
c University Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France
d CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

a r t i c l e i n f o

Article history:

Received 25 January 2016

Revised 21 November 2016

Accepted 23 November 2016

Available online xxx

Keywords:

Fixed-point arithmetic

Code generation

Certified numerical accuracy

Numerical linear algebra

a b s t r a c t

In embedded systems, efficient implementations of numerical algorithms typically use the fixed-point

arithmetic rather than the standardized and costly floating-point arithmetic. But, fixed-point developers

face two difficulties: First, writing fixed-point codes is tedious and error prone. Second, the low dynamic

range of fixed-point numbers leads to the persistent belief that fixed-point computations are inherently

inaccurate. In this article, we address these two limitations by introducing a methodology to design and

implement tools that synthesize fixed-point programs. To strengthen the user’s confidence in the syn-

thesized code, analytic methods are presented to automatically assert its numerical quality. Furthermore,

we use this framework to generate fixed-point code for linear algebra basic blocks such as matrix mul-

tiplication and inversion. For example, the former task involves trade-offs such as choosing to maximize

the code’s accuracy or minimize its size. For the two cases of matrix multiplication and inversion, we

describe, implement, and experiment with several algorithms to find trade-offs between the conflicting

goals.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fixed-point arithmetic is a lightweight alternative to floating-

point arithmetic. It does not require dedicated hardware, namely a

floating-point unit (FPU), and executes more efficiently. However,

developing fixed-point implementations requires numerical exper-

tise from the developer, is time consuming, and error prone. More-

over, the correctness and the numerical quality of the produced

codes are not guaranteed since they depend solely on the devel-

oper.

In a typical design, DSP developers prototype and simulate their

algorithms in high level environments like MATLAB. These envi-

ronments work with the floating-point arithmetic [1] to ease and

speedup the prototyping phase. However, when transferring this

software design to architectures lacking a FPU, or when mapping it

to hardware, constraints like register size, speed, area, power con-

sumption, or throughput frequently force the developer to convert

this design to the more efficient fixed-point arithmetic [2] . This

∗ Corresponding author.

E-mail addresses: matthieu.martel@univ-perp.fr (M. Martel), amine.najahi@univ-

perp.fr (A. Najahi), guillaume.revy@univ-perp.fr (G. Revy).

conversion is known to be a tedious and time consuming process

[3] that may be split into two phases:

1. Range analysis: This phase allows to find the integer

wordlength of each variable in the design. In a fixed wordlength

environment, such as in software implementations, minimizing

the integer word length allows one to allocate more digits for

the fractional part, thus obtaining more accuracy.

2. Precision analysis: In this phase, the number of bits to allocate

to the fractional part is decided. This phase must take into ac-

count the precision requirements of the application.

Over the last years, authors have suggested different strategies

to tackle these conversion phases. These contributions fit into two

categories:

1. Simulation based strategies [4,5] : The information that allows

to estimate the required range and precision are inferred from

intensive simulations carried out using an accurate arithmetic,

like floating-point arithmetic.

2. Analytic strategies [6,7] : The information is obtained using for-

mal methods such as interval arithmetic, affine arithmetic, and

norm computation for digital filters. The precision analysis re-

lies on optimization techniques.

http://dx.doi.org/10.1016/j.sysarc.2016.11.010

1383-7621/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: M. Martel et al., Trade-offs of certified fixed-point code synthesis for linear algebra basic blocks, Journal of

Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.010

http://dx.doi.org/10.1016/j.sysarc.2016.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:matthieu.martel@univ-perp.fr
mailto:amine.najahi@univ-perp.fr
mailto:guillaume.revy@univ-perp.fr
http://dx.doi.org/10.1016/j.sysarc.2016.11.010
http://dx.doi.org/10.1016/j.sysarc.2016.11.010

2 M. Martel et al. / Journal of Systems Architecture 0 0 0 (2016) 1–16

ARTICLE IN PRESS

JID: SYSARC [m5G; December 10, 2016;10:33]

User
options

Coefficients
and

variables

P
ro

b
le

m
d
isp

a
tch

e
r

Dot-product

Matrix multiplication

Triangular matrix

inversion

Cholesky decomposition

C codes

Accuracy

certificates

F
P

L
A

↔
C

G
P

E

Fig. 1. The current flow of FPLA.

In this work, we focus on the automated design of fixed-point

programs for linear algebra basic blocks, like matrix multiplica-

tion and inversion. Although many work on this topic exist, to our

knowledge, this work is the first one where an analytic approach

based on interval arithmetic is used for large problems, in order to

bound the range of the variables in the design and to give strict

bounds on the rounding errors. Indeed [4] deals with the transfor-

mation from floating-point to fixed-point of matrix decomposition

algorithms for DSPs and [8] with the implementation of matrix fac-

torization algorithms for the particular C6x VLIW processor, while

[9] and [10] discuss matrix inversion for the C64x+ DSP core and

FPGAs, respectively. For the matrix multiplication, [11] presents a

hardware implementation of a matrix multiplier optimized for a

Virtex4 FPGA, which mainly relies on a large matrix-vector block to

handle large matrices. Yet another FPGA architecture is presented

in [12] , that uses parallel DSP units and multiplies sub-matrices,

whose size has been optimized so as to fully exploit the resources

of the underlying architecture. In [13] a delay and resource efficient

methodology is introduced to implement a FPGA architecture for

matrix multiplication in integer/fixed-point arithmetic. However,

in all these works, which describe software as well as hardware

implementations, simulation based approaches are mainly used to

decide the integer and fractional wordlengths, in order to treat

small size problem without any guarantee on the accuracy of the

result. For example, the methodology presented in [10] enables to

treat inversion of size-8 matrices, while [4] is able to handle ma-

trices of size up to 35, but without providing any certificate on the

error bounds.

In this article, we present a framework for certified fixed-point

code synthesis. Through this framework, our aim is threefold:

1. to shorten the development time by providing tools that gener-

ate efficient fixed-point code,

2. to reassure the users by certifying the numerical properties of

the generated codes,

3. to propose a tool that scales up, i.e. able to synthesize code for

large problems such as inverting a 80 × 80 matrix in fixed-

point arithmetic.

This framework includes an arithmetic model, the CGPE 1 li-

brary that synthesizes code for fine-grained expressions (such as

dot-products, sums, polynomial evaluations, ...), and the high level

FPLA

2 tool to generate code for linear algebra basic blocks (such

as matrix multiplications, Cholesky decompositions, and triangular

matrix inversions). FPLA handles the aspects peculiar to each class

of input problems and relies on the CGPE library for the low-level

code synthesis details, as shown in Fig. 1 .

We intend this framework to be a proof of concept that the de-

velopment time of fixed-point codes can be dramatically reduced

and that their numerical quality can be asserted. Furthermore, we

1 See http://cgpe.gforge.inria.fr/ and [14] for details.
2 See http://www.manajahi.com/fpla/ and [15 , § 6] for details.

use the framework to show that generating codes for matrix mul-

tiplication involves accuracy versus code size trade-offs and that

generating codes for matrix inversion involves trade-offs between

obtaining sharp error bounds and risking to have run-time over-

flows. For both cases, we describe, implement, and experiment

with several algorithms to find trade-offs between the conflicting

goals.

This article is organized as follows. Section 2 introduces back-

ground material concerning the fixed-point numbers followed by

our arithmetic model. Section 3 is dedicated to matrix multiplica-

tion and to the trade-offs between code size and accuracy. Several

techniques for matrix inversion are then introduced in Section 4 ,

before a conclusion in Section 5 .

2. Background on certifying fixed-point computations

In this section, we start by a presentation of our fixed-point

arithmetic model. Then, we explicit a model based on the propa-

gation of intervals to bound the range of fixed-point variables and

the rounding errors entailed by fixed-point computations.

2.1. Fixed-point arithmetic model

Fixed-point number and variable. Unlike floating-point numbers,

fixed-point numbers do not store any information about their ex-

ponent. Indeed, the exponent is implicit and known only to the de-

veloper. And from the computer’s perspective, a fixed-point num-

ber is similar to a computer integer. The machine integer that en-

codes the fixed-point number, denoted by X , is often a k -bit signed

integer in two’s complement notation. On the other hand, the im-

plicit information on the exponent is given by the scaling factor

denoted by f ∈ Z . Together, these integers define the fixed-point

value x as:

x = X · 2

− f .

In the sequel of this article, we shall denote Q i.f the format of a

given fixed-point variable v represented using a k -bit integer asso-

ciated with a scaling factor f , with k = i + f . Here i and f denote the

number of bits in the integer and fraction parts of v , respectively,

while k represents its wordlength . Hence v is such that:

v ∈ { V · 2

− f } with V ∈ Z ∩ [−2

k −1 , 2

k −1 − 1] . (1)

Set of fixed-point variables. In practice, a fixed-point variable v may

lie in a smaller range than the one in Eq. (1) . For instance, if V ∈

Z ∩ [−2 k −1 + 2 k −2 , 2 k −1 − 2 k −2] in Eq. (1) , then v is still in the Q i.f

format but with additional constraints on the run-time values it

can take. For this reason, we shall denote by F ix the set of fixed-

point variables , where each element has a fixed-point format and

an interval that narrows its run-time values.

Please cite this article as: M. Martel et al., Trade-offs of certified fixed-point code synthesis for linear algebra basic blocks, Journal of

Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.010

http://cgpe.gforge.inria.fr/
http://www.manajahi.com/fpla/
http://dx.doi.org/10.1016/j.sysarc.2016.11.010

Download	English	Version:

https://daneshyari.com/en/article/4956258

Download	Persian	Version:

https://daneshyari.com/article/4956258

Daneshyari.com

https://daneshyari.com/en/article/4956258
https://daneshyari.com/article/4956258
https://daneshyari.com/

