
ARTICLE IN PRESS

JID: SYSARC [m5G; December 5, 2016;13:45]

Journal of Systems Architecture 0 0 0 (2016) 1–11

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Parallel custom instruction identification for extensible processors

Chenglong Xiao

a , ∗, Shanshan Wang

a , Wanjun Liu

a , Emmanuel Casseau

b

a Liaoning Technical University, China
b University of Rennes I, Irisa, Inria, France

a r t i c l e i n f o

Article history:

Received 27 January 2016

Revised 15 August 2016

Accepted 18 November 2016

Available online xxx

Keywords:

Custom instruction

Subgraph enumeration algorithm

Subgraph selection algorithm

Parallel algorithms

Extensible processors

a b s t r a c t

With the ability of customization for an application domain, extensible processors have been used more

and more in embedded systems in recent years. Extensible processors customize an application domain

by executing parts of application code in hardware instead of software. Determining parts of applica-

tion code as custom instruction generally requires subgraph enumeration and subgraph selection. Both

subgraph enumeration problem and subgraph selection problem are computationally difficult problems.

Most of previous works focus on sequential algorithms for these two problems. In this paper, we present

a parallel implementation of a latest subgraph enumeration algorithm based on a computer cluster. A

standard ant colony optimization algorithm (ACO), a modified version of ACO with local optimum search

and a parallel ACO algorithm are also proposed to solve the subgraph selection problem in this work.

Experimental results show that the parallel algorithms outperform the sequential algorithms in terms of

runtime or (and) quality of results. In addition, we have formally proved the upper bound on the number

of feasible solutions in subgraph selection problem with or without the overlapping constraint.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In last decade, extensible processors have been used more and

more in embedded systems. In extensible processors, the flexibility

is guaranteed by the general purpose processor while the runtime

performance is achieved by executing segments of code in custom

functional units (CFUs) that impose high data-level parallelism [1] .

The cluster of primitive instructions executing in CFU is formally

called as custom instruction. Nowadays, it is very common to find

commercial reconfigurable processors in embedded systems, e.g.

Altera NIOS processors, Xilinx MicroBlaze and ARC processors that

can implement such behavior.

The key problems involved in deciding the segments of code to

be executed in custom functional units are: subgraph enumeration

problem and subgraph selection problem. Both subgraph enumer-

ation problem and subgraph selection problem are computation-

ally difficult problems [2–5] . Parallel algorithms can speed up the

search by taking benefit of using several computing elements. In

this work, we propose parallel implementations for subgraph enu-

meration and subgraph selection. Fig. 1 shows the design flow of

parallel identification of custom instructions. The data-flow graphs

∗ Corresponding author.

E-mail addresses: chenglong.xiao@gmail.com (C. Xiao),

celine.shanshan.wang@gmail.com (S. Wang), liuwanjun39@163.com (W. Liu),

emmanuel.casseau@irisa.fr (E. Casseau).

(DFGs) of basic blocks in a given application are firstly generated

by a front-end compiler. Based on the DFGs, the parallel subgraph

enumeration step tries to concurrently enumerate all possible sub-

graphs (graphic representation of custom instructions) that satisfy

the micro-architecture constraints and user-defined constraints us-

ing a cluster of computers. The parallel subgraph selection step

aims at concurrently finding an optimal subset of enumerated sub-

graphs as custom instructions such that the execution time of the

given application is minimized (or the number of distinct patterns

is minimized, etc.). Finally, the selected custom instructions are

coded in the new functionally equivalent code. In this paper, we

focus on the two crucial problems involved in the design flow:

subgraph enumeration problem and subgraph selection problem.

This paper makes the following three contributions:

• a parallel implementation of a latest sequential algorithm for

subgraph enumeration problem is proposed [5] ;

• a standard sequential ant colony optimization (ACO) algorithm

and a modified version of standard ACO with local optimum

search are adapted to the subgraph selection problem, a par-

allel ACO algorithm that can achieve higher quality of results in

shorter time is also presented;

• the upper bounds on the number of feasible solutions for the

subgraph selection problem with or without overlapping con-

straint are formally proved.

The rest of the paper is organized as follows. In Section 2 , the

state of the art is introduced. Section 3 formulates the subgraph

http://dx.doi.org/10.1016/j.sysarc.2016.11.011

1383-7621/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: C. Xiao et al., Parallel custom instruction identification for extensible processors, Journal of Systems Architec-

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.011

http://dx.doi.org/10.1016/j.sysarc.2016.11.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:chenglong.xiao@gmail.com
mailto:celine.shanshan.wang@gmail.com
mailto:liuwanjun39@163.com
mailto:emmanuel.casseau@irisa.fr
http://dx.doi.org/10.1016/j.sysarc.2016.11.011
http://dx.doi.org/10.1016/j.sysarc.2016.11.011

2 C. Xiao et al. / Journal of Systems Architecture 0 0 0 (2016) 1–11

ARTICLE IN PRESS

JID: SYSARC [m5G; December 5, 2016;13:45]

Fig. 1. Parallel custom instruction identification flow.

enumeration problem and introduces a parallel algorithm imple-

mented in this work. In Section 4 , the subgraph selection prob-

lem is depicted, the upper bound on the number of feasible so-

lutions for the subgraph selection problem is proved and a se-

quential ACO algorithm and a parallel ACO algorithm are proposed.

Section 5 evaluates and compares the runtime and quality of re-

sults of the proposed algorithms. Finally, conclusions are presented

in Section 6 .

2. Related work

The key issues involved in the design flow of custom instruction

identification are subgraph enumeration and subgraph selection. In

recent years, plenty of works have been done for subgraph enu-

meration problem and subgraph selection problem. In the survey

of the two problems, we organize them in terms of constraints.

2.1. Subgraph enumeration

Subgraph enumeration is the process to enumerate all the sub-

graphs that satisfy certain design constraints from a given applica-

tion graph. It is a computationally difficult problem. The number

of subgraphs in the DFG of a given application could be 2 n , where

n is the number of nodes in the DFG [6] . Since the number of sub-

graphs is exponential with respect to the size of the DFG, efficient

approaches to the subgraph enumeration problem are necessary.

In order to reduce the complexity of the enumeration, several con-

straints are added as pruning criteria. Here, we survey the sub-

graph enumeration problem by classifying the previous works ac-

cording to the specified constraints on the enumerated subgraphs.

Tree Shaped Subgraphs As the type of subgraphs enumerated

directly relates to the enumeration problem complexity, some pre-

vious researches only focus on enumerating tree-shaped subgraphs

[7] . Considering only tree-shaped subgraphs can radically reduce

the complexity. In [8] , a polynomial time dynamic programming

method is applied to cover the DFG with the minimal number

of tree-shaped subgraphs. However, enumerating only tree-shaped

subgraphs may lead to limited improvements on performance or

other aspects.

Multiple Inputs Single Outputs (MISO) In the context of exten-

sible processors, the number of inputs and the number of outputs

(I/O) are constrained due to the number of ports to the register

files of the base processor. The tighter the I/O constraints are, the

less number of subgraphs considered. In other words, the enumer-

ation can be done in a shorter time if restricting the I/O constraints

to lower values. Early works that try to enumerate single output

subgraphs can be found in [9,10] . A subgraph with multiple inputs

and only one output subgraphs is called MISO subgraph. The ap-

proach in [9] enumerates all the K -MISO subgraphs with dynamic

programming, where K is the input constraint. Another approach in

[10] iteratively considers the MISO subgraphs from the MISO sub-

graphs of maximal size under a specified input constraint. These

approaches are efficient only when the input constraint is low. Un-

fortunately, relaxing the input constraint can lead to exponential

computation.

Maximal Multiple Inputs Multiple Outputs (MaxMIMO) In

recent years, enumerating the maximal MIMO subgraphs has

drawn a wide interest from researchers who work on application-

Table 1

The complexity of subgraph enumeration problem.

Type of subgraphs Upper bound on the number of subgraphs

MIMO | G | IN max | G | OUT max

MaxMIMO 2 | V in |
CC-Subgraphs 2 n + n + 1 − d n

specific instruction-set extension processors (ASIPs) [11–15] . Poth-

ineni et al. [11] were the first ones to propose an algorithm for

MaxMIMO enumeration. The proposed algorithm is based on an

incompatibility graph. However, the algorithm only generates con-

nected MaxMIMOs. In [12] , the MaxMIMOs enumeration problem

is reformulated as a maximal clique enumeration problem after

grouping equivalence nodes and building cluster graph. Atasu et al.

[13] proved that the number of MaxMIMOs is bounded by 2 | V in | ,
where V in is the set of invalid nodes in the DFG. A top-down man-

ner algorithm proposed in [14] solves the MaxMIMOs enumeration

problem efficiently by a division operation on the DFG.

Connected or Disjoint Subgraphs A computation subgraph can

be a connected subgraph or a disjoint subgraph. To reduce the high

computational complexity, some authors look only for connected

subgraphs [16,17] . Those approaches for enumerating only con-

nected subgraphs achieve lower complexity by sacrificing the op-

timality. As we known, imposing the parallelism is one of the ma-

jor benefits by using custom operators. Compared with connected

subgraph, the disjoint subgraph can exploit more parallelism when

implemented as hardware function unit. Therefore, most of recent

researches mainly focus on enumerating all subgraphs including

connected subgraphs and disjoint subgraphs [2–5] .

Multiple Inputs Multiple Outputs (MIMO) Compared with

tree-shaped custom instructions and MISO custom instructions,

MIMO custom instructions can provide significant performance im-

provements without sacrificing too much area [1] . Most of recent

studies try to enumerate connected subgraphs and (or) disjoint

subgraphs with multiple inputs and multiple outputs [2–5] . Gen-

erally, a subgraph could be iteratively formed by absorbing a node

or nodes to a previously identified smaller subgraph. Enumerating

all possible subgraphs under input and output (I/O) constraints is

a computationally difficult problem, because the number of pos-

sible subgraphs grows exponentially in the number of inputs and

outputs. The upper bound on the number of subgraphs is formally

proved to be | G | IN max | G | OUT max in [18] , where IN max is the input con-

straint and OUT max is the output constraint. The work in [3] reports

that the performance improvement increases with the relax of in-

put constraint and output constraint.

Table 1 shows the upper bound on the number of enumer-

ated subgraphs under different constraints. In the first column

of Table 1 , MIMO and MaxMIMO represent the convex subgraphs

satisfying I/O constraints and the maximal convex subgraphs re-

spectively. The connected convex subgraphs are represented as

CC − Subgraphs .

As shown in Table 1 , the subgraph enumeration problem is in-

deed a computationally difficult problem. However, all of previous

works focus on proposing sequential algorithms for this problem.

In this paper, we propose a parallel implementation of a latest se-

quential algorithm [5] .

2.2. Subgraph selection

Subgraph selection is the process that selects the most prof-

itable subset of subgraphs from the set of subgraphs enumer-

ated in the subgraph enumeration step. When hardware design is

targeted, the subgraph candidates are selected either due to the

high frequency of occurrences (to make use of resource sharing)

in the application or due to their high performance compared to

Please cite this article as: C. Xiao et al., Parallel custom instruction identification for extensible processors, Journal of Systems Architec-

ture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.011

http://dx.doi.org/10.1016/j.sysarc.2016.11.011

Download English Version:

https://daneshyari.com/en/article/4956259

Download Persian Version:

https://daneshyari.com/article/4956259

Daneshyari.com

https://daneshyari.com/en/article/4956259
https://daneshyari.com/article/4956259
https://daneshyari.com

